accel21 2.1.0.0
|
Accel 21 Click is a compact add-on board that contains an acceleration sensor. This board features the MIS2DH, a high-performance three-axis accelerometer from STMicroelectronics. The MIS2DH allows selectable full-scale acceleration measurements in ranges of ±2g, ±4g, ±8g, or ±16g in three axes with a configurable host interface that supports both SPI and I2C serial communication. It also supports high-resolution and low-power operating modes, allowing maximum flexibility to meet various use case needs.
We provide a library for the Accel 21 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for Accel 21 Click driver.
accel21_cfg_setup
Config Object Initialization function. accel21_init
Initialization function. accel21_default_cfg
Click Default Configuration function. accel21_set_config
Accel 21 set config function. accel21_get_axis
Accel 21 get accel data function. accel21_get_temperature
Accel 21 get temperature function. This library contains API for Accel 21 Click driver. The library initializes and defines the I2C or SPI bus drivers to write and read data from registers. The library also includes a function for reading X-axis, Y-axis, and Z-axis data.
The demo application is composed of two sections :
The initialization of I2C or SPI module, log UART, and additional pins. After the driver init, the app executes a default configuration, checks communication and device ID.
This example demonstrates the use of the Accel 21 Click board™. Measures and displays acceleration data for X-axis, Y-axis, and Z-axis. Results are being sent to the UART Terminal, where you can track their changes.
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.