altitude5 2.0.0.0
Main Page

Altitude 5 click

‍Altitude 5 Click is a compact add-on board allowing high-resolution barometric pressure measurement. This board features the KP236, an analog barometric air pressure sensor based on a capacitive principle from Infineon Technologies. The KP236 is primarily developed for measuring barometric air pressure but can also be used in other application fields. It is surface micro-machined with a monolithic integrated signal conditioning circuit implemented in BiCMOS technology. The calibrated transfer function converts pressure into an analog output signal in a range of 40kPa to 115kPa. However, the choice of signal processing is up to the user; more precisely, the user can process the output signal in analog or digital form. The high accuracy and the high sensitivity of the KP236 make this Click boardâ„¢ suitable for advanced automotive applications and industrial and consumer applications.

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Sep 2021.
  • Type : I2C type

Software Support

We provide a library for the Altitude5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

‍This library contains API for Altitude5 Click driver.

Standard key functions :

Example key functions :

Example Description

‍This library contains API for Altitude 5 Click driver. The demo application reads ADC value, calculate pressure and altitude.

The demo application is composed of two sections :

Application Init

‍Initializes I2C or analog driver and log UART. After driver initialization the app set default settings.

void application_init ( void )
{
log_cfg_t log_cfg;
altitude5_cfg_t altitude5_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
altitude5_cfg_setup( &altitude5_cfg );
ALTITUDE5_MAP_MIKROBUS( altitude5_cfg, MIKROBUS_1 );
err_t init_flag = altitude5_init( &altitude5, &altitude5_cfg );
if ( I2C_MASTER_ERROR == init_flag )
{
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
altitude5_default_cfg ( &altitude5 );
log_info( &logger, " Application Task " );
log_printf( &logger, "----------------------------\r\n" );
Delay_ms ( 100 );
}
#define ALTITUDE5_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition altitude5.h:96
void application_init(void)
Definition main.c:32

Application Task

‍This is an example that demonstrates the use of the Altitude 5 Click boardâ„¢. In this example, we read ADC values and display the Pressure ( mBar ) and Altitude ( m ) data. Results are being sent to the Usart Terminal where you can track their changes.

void application_task ( void )
{
static float pressure;
static float altitude;
altitude5_get_pressure( &altitude5, &pressure );
log_printf( &logger, " Pressure : %.2f mBar \r\n", pressure );
Delay_ms ( 100 );
altitude5_get_altitude( &altitude5, &altitude );
log_printf( &logger, " Altitude : %.2f m \r\n", altitude );
log_printf( &logger, "----------------------------\r\n" );
Delay_ms ( 1000 );
}
void application_task(void)
Definition main.c:68

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Altitude5

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.