battboost 2.1.0.0
Main Page

BATT Boost click

‍BATT Boost Click is a compact add-on board that expands a coin battery cell's lifetime and current capability, like the CR2032 and lithium thionyl batteries. This board features the NBM5100A, a coin-cell battery life booster with adaptive power optimization from Nexperia. It is a battery energy management device designed to maximize usable capacity from non-rechargeable, primary batteries when used in low-voltage, low-power applications requiring burst current loads. The devices overcome voltage drop and battery life limitations associated with extracting high pulse currents.

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Oct 2023.
  • Type : I2C type

Software Support

We provide a library for the BATT Boost Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

‍This library contains API for BATT Boost Click driver.

Standard key functions :

Example key functions :

  • battboost_get_vcap This function is used to read the storage capacitor voltage status.
    err_t battboost_get_vcap ( battboost_t *ctx, float *vcap );
    err_t battboost_get_vcap(battboost_t *ctx, float *vcap)
    BATT Boost gets the storage capacitor voltage status function.
  • battboost_set_op_mode This function is used to select the desired operating mode of the device.
    err_t battboost_set_op_mode ( battboost_t *ctx, uint8_t op_mode );
    err_t battboost_set_op_mode(battboost_t *ctx, uint8_t op_mode)
    BATT Boost sets the operating mode function.
  • battboost_get_status This function reads the the status information of low battery input, capacitor input voltage early warning, VDH output alarm and ready state.
    err_t battboost_get_status ( battboost_t *ctx, uint8_t *status );
    err_t battboost_get_status(battboost_t *ctx, uint8_t *status)
    BATT Boost gets the status function.

Example Description

‍This library contains API for the BATT Boost Click driver. This driver provides the functions to controle battery energy management device designed to maximize usable capacity from non-rechargeable.

The demo application is composed of two sections :

Application Init

‍Initialization of I2C module and log UART. After driver initialization, the app executes a default configuration, sets the output voltage to 1.8V, charge current to 16mA, and early warning voltage to 2.6V.

void application_init ( void )
{
log_cfg_t log_cfg;
battboost_cfg_t battboost_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
battboost_cfg_setup( &battboost_cfg );
BATTBOOST_MAP_MIKROBUS( battboost_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == battboost_init( &battboost, &battboost_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( BATTBOOST_ERROR == battboost_default_cfg ( &battboost ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
Delay_ms ( 100 );
}
@ BATTBOOST_ERROR
Definition battboost.h:318
#define BATTBOOST_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition battboost.h:265
void application_init(void)
Definition main.c:41

Application Task

‍This example demonstrates the use of the BATT Boost Click board. The demo application uses two operations in two states: the charging state and the active state. First, when the device is in a Charge state, the external storage capacitor is charging from VBT using a constant current and displays storage capacitor voltage levels and charge cycle count. Upon completion of a Charge state, the device transitions to the Active state at which time VDH becomes a regulated voltage output of 1.8V (default configuration), displays storage capacitor voltage level, and monitors alarms for low output voltage (below 1.8V) and early warning (below 2.4V). Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{
float vcap = 0;
uint8_t status = 0;
uint32_t chenergy = 0;
{
{
log_printf( &logger, "\nOperating state: Charge\r\n" );
}
if ( BATTBOOST_OK == battboost_get_vcap( &battboost, &vcap ) )
{
log_printf( &logger, " Capacitor Voltage: %.2f V \r\n", vcap );
}
if ( BATTBOOST_OK == battboost_get_chenergy( &battboost, &chenergy ) )
{
log_printf( &logger, " Charge cycle count: %lu \r\n", chenergy );
}
Delay_ms ( 1000 );
}
else
{
{
log_printf( &logger, "\nOperating state: Active\r\n" );
if ( BATTBOOST_OK == battboost_get_vcap( &battboost, &vcap ) )
{
log_printf( &logger, " Capacitor Voltage: %.2f V \r\n", vcap );
}
if ( BATTBOOST_OK == battboost_get_status( &battboost, &status ) )
{
if ( BATTBOOST_STATUS_EW & status )
{
log_printf( &logger, " Status: Early warning.\r\n" );
}
if ( BATTBOOST_STATUS_ALRM & status )
{
log_printf( &logger, " Status: Low output voltage in the Active state.\r\n" );
}
}
}
Delay_ms ( 1000 );
}
}
@ BATTBOOST_OK
Definition battboost.h:317
#define BATTBOOST_STATUS_ALRM
Definition battboost.h:106
#define BATTBOOST_OP_MODE_CHARGE
Definition battboost.h:186
#define BATTBOOST_STATUS_EW
Definition battboost.h:105
#define BATTBOOST_OP_MODE_ACTIVE
Definition battboost.h:189
#define BATTBOOST_STATUS_READY
Definition battboost.h:239
err_t battboost_get_chenergy(battboost_t *ctx, uint32_t *chenergy)
BATT Boost gets the charge cycle count function.
uint8_t battboost_get_ready(battboost_t *ctx)
BATT Boost gets ready state function.
void application_task(void)
Definition main.c:78

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BATTBoost

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.