battboost 2.1.0.0
|
BATT Boost Click is a compact add-on board that expands a coin battery cell's lifetime and current capability, like the CR2032 and lithium thionyl batteries. This board features the NBM5100A, a coin-cell battery life booster with adaptive power optimization from Nexperia. It is a battery energy management device designed to maximize usable capacity from non-rechargeable, primary batteries when used in low-voltage, low-power applications requiring burst current loads. The devices overcome voltage drop and battery life limitations associated with extracting high pulse currents.
We provide a library for the BATT Boost Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for BATT Boost Click driver.
battboost_cfg_setup
Config Object Initialization function. battboost_init
Initialization function. battboost_default_cfg
Click Default Configuration function. battboost_get_vcap
This function is used to read the storage capacitor voltage status. battboost_set_op_mode
This function is used to select the desired operating mode of the device. battboost_get_status
This function reads the the status information of low battery input, capacitor input voltage early warning, VDH output alarm and ready state. This library contains API for the BATT Boost Click driver. This driver provides the functions to controle battery energy management device designed to maximize usable capacity from non-rechargeable.
The demo application is composed of two sections :
Initialization of I2C module and log UART. After driver initialization, the app executes a default configuration, sets the output voltage to 1.8V, charge current to 16mA, and early warning voltage to 2.6V.
This example demonstrates the use of the BATT Boost Click board. The demo application uses two operations in two states: the charging state and the active state. First, when the device is in a Charge state, the external storage capacitor is charging from VBT using a constant current and displays storage capacitor voltage levels and charge cycle count. Upon completion of a Charge state, the device transitions to the Active state at which time VDH becomes a regulated voltage output of 1.8V (default configuration), displays storage capacitor voltage level, and monitors alarms for low output voltage (below 1.8V) and early warning (below 2.4V). Results are being sent to the UART Terminal, where you can track their changes.
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.