canisolator3 2.1.0.0
Main Page

CAN Isolator 3 click

‍CAN Isolator 3 Click is a compact add-on board that provides isolated CAN communication. This board features the MAX14882, an isolated CAN transceiver with an integrated transformer driver from Analog Devices. It is galvanically isolated between the device's CAN-protocol controller side (TDX, RDX) and the physical wires of the CAN network (CANH, CANL) cable-side/bus-side of the transceiver.

click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2023.
  • Type : UART type

Software Support

We provide a library for the CAN Isolator 3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

‍This library contains API for CAN Isolator 3 Click driver.

Standard key functions :

Example key functions :

Example Description

‍This example writes and reads and processes data from CAN Isolator 3 Click. The library also includes a function for selection of the output polarity.

The demo application is composed of two sections :

Application Init

‍Initializes the driver and performs the click default configuration.

void application_init ( void )
{
log_cfg_t log_cfg;
canisolator3_cfg_t canisolator3_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
canisolator3_cfg_setup( &canisolator3_cfg );
CANISOLATOR3_MAP_MIKROBUS( canisolator3_cfg, MIKROBUS_1 );
if ( UART_ERROR == canisolator3_init( &canisolator3, &canisolator3_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
canisolator3_default_cfg ( &canisolator3 );
#ifdef DEMO_APP_TRANSMITTER
log_info( &logger, "---- Transmitter mode ----" );
#else
log_info( &logger, "---- Receiver mode ----" );
#endif
log_info( &logger, " Application Task " );
}
#define CANISOLATOR3_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition canisolator3.h:100
void application_init(void)
Definition main.c:54

Application Task

‍This example contains Transmitter/Receiver task depending on uncommented code. Receiver logs each received byte to the UART for data logging, while the transmitter sends messages every 2 seconds.

void application_task ( void )
{
#ifdef DEMO_APP_TRANSMITTER
canisolator3_generic_write( &canisolator3, TX_MESSAGE, strlen( TX_MESSAGE ) );
log_info( &logger, "---- Data sent ----" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
#else
canisolator3_process( &canisolator3 );
#endif
}
#define TX_MESSAGE
Definition main.c:31
void application_task(void)
Definition main.c:92

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.CANIsolator3

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.