dcmotor17 2.0.0.0
Main Page

DC Motor 17 click

DC Motor 17 Click is a compact add-on board that contains a brushed DC motor driver. This board features the TC78H660FTG, a dual H Bridge driver for one or two brushed motors that incorporate a DMOS with low on-resistance in output transistors from Toshiba Semiconductor.

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Nov 2020.
  • Type : GPIO type

Software Support

We provide a library for the DcMotor17 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for DcMotor17 Click driver.

Standard key functions :

‍Config Object Initialization function.

void dcmotor17_cfg_setup ( dcmotor17_cfg_t *cfg );

‍Initialization function.

err_t dcmotor17_init ( dcmotor17_t *ctx, dcmotor17_cfg_t *cfg );

‍Click Default Configuration function.

void dcmotor17_default_cfg ( dcmotor17_t *ctx );

Example key functions :

‍DC Motor 17 stop motor function.

dcmotor17_retval_t dcmotor17_stop ( dcmotor17_t *ctx, uint8_t sel_out );

‍DC Motor 17 forward function.

dcmotor17_retval_t dcmotor17_forward ( dcmotor17_t *ctx, uint8_t sel_out );

‍DC Motor 17 reverse function.

dcmotor17_retval_t dcmotor17_reverse ( dcmotor17_t *ctx, uint8_t sel_out );

Examples Description

‍The library covers all the necessary functions to control DC Motor 17 Click board. Library performs a standard GPIO interface communication. DC Motor 17 Click board is a dual H Bridge driver IC for one or two DC brushed motors which incorporates DMOS with low on-resistance in output transistors.

The demo application is composed of two sections :

Application Init

‍Initializes GPIO driver, set default configuration and start to write log.

void application_init ( void ) {
log_cfg_t log_cfg; /**< Logger config object. */
dcmotor17_cfg_t dcmotor17_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_printf( &logger, "----------------------------\r\n" );
log_printf( &logger, " DC Motor 17 click \r\n" );
log_printf( &logger, "----------------------------\r\n" );
log_info( &logger, " Application Init " );
// Click initialization.
dcmotor17_cfg_setup( &dcmotor17_cfg );
DCMOTOR17_MAP_MIKROBUS( dcmotor17_cfg, MIKROBUS_1 );
if ( dcmotor17_init( &dcmotor17, &dcmotor17_cfg ) == DIGITAL_OUT_UNSUPPORTED_PIN ) {
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
dcmotor17_default_cfg ( &dcmotor17 );
log_info( &logger, " Application Task " );
}

Application Task

‍This is an example that demonstrates the use of the DC Motor 17 click board. This example demonstrates the use of DC Motor 17 click, we first control motion A by driving it forward motion for 5 seconds, than applying short brakes it for 2 second, then driving it in reverse for 5 seconds and stop the motor for 2 seconds. In the second part of the example, we control motion B by the same principle. Results are being sent to the Usart Terminal where you can track their changes.

void application_task ( void ) {
log_printf( &logger, "----------------------------\r\n" );
log_printf( &logger, " Motor A \r\n" );
log_printf( &logger, "----------------------------\r\n" );
log_printf( &logger, " Start the motor forward. \r\n" );
dcmotor17_forward( &dcmotor17, DCMOTOR17_SEL_OUT_A );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "----------------------------\r\n" );
log_printf( &logger, " Stop the motor. \r\n" );
dcmotor17_stop( &dcmotor17, DCMOTOR17_SEL_OUT_A );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "----------------------------\r\n" );
log_printf( &logger, " Start the motor reverse. \r\n" );
dcmotor17_reverse( &dcmotor17, DCMOTOR17_SEL_OUT_A );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "----------------------------\r\n" );
log_printf( &logger, " Stop the motor. \r\n" );
dcmotor17_stop( &dcmotor17, DCMOTOR17_SEL_OUT_A );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "----------------------------\r\n" );
log_printf( &logger, " Motor B \r\n" );
log_printf( &logger, "----------------------------\r\n" );
log_printf( &logger, " Start the motor forward. \r\n" );
dcmotor17_forward( &dcmotor17, DCMOTOR17_SEL_OUT_B );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "----------------------------\r\n" );
log_printf( &logger, " Stop the motor. \r\n" );
dcmotor17_stop( &dcmotor17, DCMOTOR17_SEL_OUT_B );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "----------------------------\r\n" );
log_printf( &logger, " Start the motor reverse. \r\n" );
dcmotor17_reverse( &dcmotor17, DCMOTOR17_SEL_OUT_B );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "----------------------------\r\n" );
log_printf( &logger, " Stop the motor. \r\n" );
dcmotor17_stop( &dcmotor17, DCMOTOR17_SEL_OUT_B );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DcMotor17

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all Mikroelektronika compilers.