dtmf 2.1.0.0
Main Page

DTMF click

‍DTMF Click is a compact add-on board designed for projects that demand reliable telephony interactions. This board features the CMX865A, a DTMF Codec/FSK Combo multi-standard modem from CML Micro. The CMX865A excels in encoding and decoding DTMF signals, alongside supporting FSK data transmission compatible with V.23, V.21, Bell 103, and Bell 202 standards, making it versatile for various telephony applications. It's particularly adept at enabling dual-mode operations for transmitting and receiving data, ensuring high fidelity in signal processing and resistance to voice falsing. Ideal for security systems, automated response services, and IoT devices requiring telephonic interaction, DTMF Click provides a solution for developers looking to incorporate reliable telecommunication capabilities.

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Oct 2023.
  • Type : SPI type

Software Support

We provide a library for the DTMF Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

‍This library contains API for DTMF Click driver.

Standard key functions :

  • dtmf_cfg_setup Config Object Initialization function.
    void dtmf_cfg_setup ( dtmf_cfg_t *cfg );
    void dtmf_cfg_setup(dtmf_cfg_t *cfg)
    DTMF configuration object setup function.
    DTMF Click configuration object.
    Definition dtmf.h:377
  • dtmf_init Initialization function.
    err_t dtmf_init ( dtmf_t *ctx, dtmf_cfg_t *cfg );
    err_t dtmf_init(dtmf_t *ctx, dtmf_cfg_t *cfg)
    DTMF initialization function.
    DTMF Click context object.
    Definition dtmf.h:352

Example key functions :

  • dtmf_handshake_init This function performs a handshake init which resets the device settings to default.
    err_t dtmf_handshake_init ( dtmf_t *ctx );
    err_t dtmf_handshake_init(dtmf_t *ctx)
    DTMF handshake init function.
  • dtmf_dial This function dials the selected number by alternating between DTMF and No-tone.
    err_t dtmf_dial ( dtmf_t *ctx, uint8_t *dial_num );
    err_t dtmf_dial(dtmf_t *ctx, uint8_t *dial_num)
    DTMF dial function.
  • dtmf_send_message This function sends an array of bytes via V.23 FSK 1200bps modem in start-stop 8.1 mode.
    err_t dtmf_send_message ( dtmf_t *ctx, uint8_t *data_in, uint8_t len );
    err_t dtmf_send_message(dtmf_t *ctx, uint8_t *data_in, uint8_t len)
    DTMF send message function.

Example Description

‍This example demonstrates the use of DTMF click board by showing the communication between the two click boards connected to PBX system.

The demo application is composed of two sections :

Application Init

‍Initializes the driver and logger, and displays the selected application mode.

void application_init ( void )
{
log_cfg_t log_cfg;
dtmf_cfg_t dtmf_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
dtmf_cfg_setup( &dtmf_cfg );
DTMF_MAP_MIKROBUS( dtmf_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == dtmf_init( &dtmf, &dtmf_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
#if ( DEMO_APP == APP_DIALING )
log_printf( &logger, " Application Mode: Dialing\r\n" );
#elif ( DEMO_APP == APP_ANSWERING )
log_printf( &logger, " Application Mode: Answering\r\n" );
#else
#error "Selected application mode is not supported!"
#endif
log_info( &logger, " Application Task " );
}
#define DTMF_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition dtmf.h:335
void application_init(void)
Definition main.c:51

Application Task

‍Dialing application mode:

- Resets the device settings and dials the selected number. If a call is answered it starts sending desired messages every couple of seconds with constantly checking if a call is still in progress or it's terminated from the other side.

‍Answering application mode:

- Resets the device settings and waits for an incoming call indication, answers the call, and waits for a desired number of messages. The call is terminated after all messages are received successfully.

void application_task ( void )
{
uint8_t state = DTMF_STATE_IDLE;
uint32_t time_cnt = 0;
uint8_t msg_cnt = 0;
#if ( DEMO_APP == APP_DIALING )
log_printf( &logger, "\r\n Hook OFF\r\n" );
dtmf_hook_off ( &dtmf );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, " Dial: %s\r\n", ( char * ) DIAL_NUMBER );
dtmf_dial ( &dtmf, DIAL_NUMBER );
dtmf.rx_mode &= DTMF_RX_LEVEL_MASK; // No change in rx level setting
dtmf_set_receive_mode ( &dtmf, dtmf.rx_mode );
for ( ; ; )
{
Delay_ms ( 1 );
if ( !dtmf_get_irq_pin ( &dtmf ) )
{
time_cnt = 0;
}
if ( ( DTMF_STATE_IRQ_SET == state ) && !dtmf_call_progress ( &dtmf ) )
{
if ( time_cnt < DTMF_TIMING_BUSY )
{
log_printf( &logger, " Busy\r\n" );
break;
}
else if ( time_cnt < DTMF_TIMING_DISCONNECTED )
{
log_printf( &logger, " Disconnected\r\n" );
break;
}
else if ( time_cnt < DTMF_TIMING_RINGING )
{
log_printf( &logger, " Ringing\r\n" );
}
}
if ( ( DTMF_STATE_RINGING == state ) && ( time_cnt > DTMF_TIMING_CALL_PROGRESS ) )
{
log_printf( &logger, " Call in progress\r\n" );
time_cnt = 0;
}
if ( ( DTMF_STATE_CALL_IN_PROGRESS == state ) && !( time_cnt % DTMF_TIMING_SEND_MESSAGE ) )
{
log_printf( &logger, " Send message %u\r\n", ( uint16_t ) msg_cnt++ );
}
if ( time_cnt++ > DTMF_TIMEOUT_CALL_PROGRESS )
{
log_printf( &logger, " Timeout\r\n" );
break;
}
}
log_printf( &logger, " Hook ON\r\n" );
dtmf_hook_on ( &dtmf );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
#elif ( DEMO_APP == APP_ANSWERING )
uint8_t rx_data = 0;
uint8_t msg_end_buff[ 2 ] = { 0 };
log_printf( &logger, "\r\n Waiting for a call...\r\n" );
while ( dtmf_get_rdn_pin ( &dtmf ) );
Delay_ms ( 1000 );
log_printf( &logger, " Hook OFF\r\n" );
dtmf_hook_off ( &dtmf );
Delay_ms ( 1000 );
log_printf( &logger, " Waiting for %u messages...\r\n", ( uint16_t ) NUM_MESSAGES );
dtmf.rx_mode &= DTMF_RX_LEVEL_MASK; // No change in rx level setting
dtmf_set_receive_mode ( &dtmf, dtmf.rx_mode );
for ( ; ; )
{
Delay_ms ( 1 );
if ( !dtmf_get_irq_pin ( &dtmf ) )
{
if ( DTMF_STATE_IDLE != state )
{
log_printf( &logger, "\r\n Disconnected\r\n" );
break;
}
log_printf( &logger, " Message %u: ", ( uint16_t ) msg_cnt );
time_cnt = 0;
}
if ( ( DTMF_STATE_IRQ_SET == state ) && !( time_cnt % DTMF_TIMING_RX_READY ) )
{
if ( dtmf_unscram_1s_det ( &dtmf ) && dtmf_rx_ready ( &dtmf ) )
{
dtmf_receive_data ( &dtmf, &rx_data );
log_printf( &logger, "%c", ( uint16_t ) rx_data );
if ( '\r' == rx_data )
{
msg_end_buff[ 0 ] = rx_data;
}
else if ( '\n' == rx_data )
{
msg_end_buff[ 1 ] = rx_data;
}
else
{
msg_end_buff[ 0 ] = 0;
msg_end_buff[ 1 ] = 0;
}
}
if ( ( '\r' == msg_end_buff[ 0 ] ) && ( '\n' == msg_end_buff[ 1 ] ) )
{
msg_end_buff[ 0 ] = 0;
msg_end_buff[ 1 ] = 0;
state = DTMF_STATE_IDLE;
if ( NUM_MESSAGES == ++msg_cnt )
{
Delay_ms ( 100 );
log_printf( &logger, " Terminate call\r\n" );
Delay_ms ( 100 );
break;
}
}
}
if ( time_cnt++ > DTMF_TIMING_WAIT_FOR_MESSAGE )
{
log_printf( &logger, "\r\n Timeout\r\n" );
break;
}
}
log_printf( &logger, " Hook ON\r\n" );
dtmf_hook_on ( &dtmf );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
#endif
}
#define DTMF_STATE_CALL_IN_PROGRESS
Definition dtmf.h:300
#define DTMF_TIMING_DISCONNECTED
Definition dtmf.h:286
#define DTMF_TIMING_RINGING
Definition dtmf.h:287
#define DTMF_TIMING_SEND_MESSAGE
Definition dtmf.h:289
#define DTMF_TIMING_BUSY
Definition dtmf.h:285
#define DTMF_TIMEOUT_CALL_PROGRESS
Definition dtmf.h:284
#define DTMF_TIMING_RX_READY
Definition dtmf.h:290
#define DTMF_RX_USART_START_STOP
Definition dtmf.h:224
#define DTMF_RX_MODE_DTMF_TONES
Definition dtmf.h:211
#define DTMF_RX_TONE_DETECT_CALL_PROG
Definition dtmf.h:237
#define DTMF_STATE_IRQ_SET
Definition dtmf.h:298
#define DTMF_TIMING_CALL_PROGRESS
Definition dtmf.h:288
#define DTMF_STATE_RINGING
Definition dtmf.h:299
#define DTMF_RX_DATA_PARITY_8_NO_PAR
Definition dtmf.h:228
#define DTMF_STATE_IDLE
DTMF state setting.
Definition dtmf.h:297
#define DTMF_RX_MODE_V23_FSK_1200
Definition dtmf.h:207
#define DTMF_RX_LEVEL_MASK
Definition dtmf.h:222
#define DTMF_TIMING_WAIT_FOR_MESSAGE
Definition dtmf.h:291
uint8_t dtmf_get_irq_pin(dtmf_t *ctx)
DTMF get irq pin function.
uint8_t dtmf_unscram_1s_det(dtmf_t *ctx)
DTMF unscram 1s det function.
uint8_t dtmf_rx_ready(dtmf_t *ctx)
DTMF rx ready function.
void dtmf_hook_off(dtmf_t *ctx)
DTMF hook off function.
err_t dtmf_receive_data(dtmf_t *ctx, uint8_t *data_out)
DTMF receive data function.
uint8_t dtmf_call_progress(dtmf_t *ctx)
DTMF call progress function.
void dtmf_hook_on(dtmf_t *ctx)
DTMF hook on function.
err_t dtmf_set_receive_mode(dtmf_t *ctx, uint16_t data_in)
DTMF set receive mode function.
uint8_t dtmf_get_rdn_pin(dtmf_t *ctx)
DTMF get rdn pin function.
#define NUM_MESSAGES
Definition main.c:46
#define DIAL_NUMBER
Definition main.c:42
void application_task(void)
Definition main.c:89
#define TEXT_TO_SEND
Definition main.c:43

Note

‍We have used a Yeastar S20 VoIP PBX system for the test, where the click boards are

connected to ports 1 and 2 configured as FXS extension with numbers 1000 and 1001 (dialer).

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DTMF

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.