flash9 2.0.0.0
Main Page

Flash 9 click

‍Flash 9 Click is a compact add-on board that contains a highly reliable memory solution. This board features the W25Q02JV, an SPI configurable serial Flash memory solution from Winbond Electronics. It represents a four 512Mb stack die supporting linear addressing for the full 2Gb memory address range, offering flexibility and performance well beyond ordinary Serial Flash devices. The W25Q02JV array is organized into 1,048,576 programmable pages of 256-bytes each, where up to 256 bytes can be programmed at a time. This memory also has advanced security features, can withstand many write cycles (minimum 100k), and has a data retention period greater than 20 years.

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Dec 2021.
  • Type : SPI type

Software Support

We provide a library for the Flash 9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

‍This library contains API for Flash 9 Click driver.

Standard key functions :

Example key functions :

  • flash9_erase_memory This function erases the selected amount of memory which contains the selected address.
    err_t flash9_erase_memory ( flash9_t *ctx, uint8_t erase_cmd, uint32_t address );
    err_t flash9_erase_memory(flash9_t *ctx, uint8_t erase_cmd, uint32_t address)
    Flash 9 erase memory function.
  • flash9_memory_write This function writes a desired number of data bytes to the memory starting from the selected address.
    err_t flash9_memory_write ( flash9_t *ctx, uint32_t address, uint8_t *data_in, uint16_t len );
    err_t flash9_memory_write(flash9_t *ctx, uint32_t address, uint8_t *data_in, uint16_t len)
    Flash 9 memory write function.
  • flash9_memory_read_fast This function reads a desired number of data bytes from the memory starting from the selected address performing the fast read command.
    err_t flash9_memory_read_fast ( flash9_t *ctx, uint32_t address, uint8_t *data_out, uint16_t len );
    err_t flash9_memory_read_fast(flash9_t *ctx, uint32_t address, uint8_t *data_out, uint16_t len)
    Flash 9 memory read fast function.

Example Description

‍This example demonstrates the use of Flash 9 click board by writing specified data to the memory and reading it back.

The demo application is composed of two sections :

Application Init

‍Initializes the driver and performs the click default configuration.

void application_init ( void )
{
log_cfg_t log_cfg;
flash9_cfg_t flash9_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
flash9_cfg_setup( &flash9_cfg );
FLASH9_MAP_MIKROBUS( flash9_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == flash9_init( &flash9, &flash9_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( FLASH9_ERROR == flash9_default_cfg ( &flash9 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
@ FLASH9_ERROR
Definition flash9.h:242
#define FLASH9_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition flash9.h:181
void application_init(void)
Definition main.c:33

Application Task

‍Erases the memory sector and then writes a desired number of data bytes to the memory

and verifies that it is written correctly by reading from the same memory location and displaying the memory content on the USB UART.

void application_task ( void )
{
uint8_t data_buf[ 128 ] = { 0 };
{
log_printf ( &logger, "Sector from address 0x%.8LX has been erased!\r\n", STARTING_ADDRESS );
}
Delay_ms ( 500 );
strlen ( DEMO_TEXT_MESSAGE ) ) )
{
log_printf ( &logger, "Data written to address 0x%.8LX: \"%s\"\r\n", STARTING_ADDRESS,
( char * ) DEMO_TEXT_MESSAGE );
}
Delay_ms ( 500 );
if ( FLASH9_OK == flash9_memory_read_fast ( &flash9, STARTING_ADDRESS, data_buf,
strlen ( DEMO_TEXT_MESSAGE ) ) )
{
log_printf ( &logger, "Data read from address 0x%.8LX: \"%s\"\r\n\n", STARTING_ADDRESS,
data_buf );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
@ FLASH9_OK
Definition flash9.h:241
#define FLASH9_CMD_SECTOR_ERASE_WITH_4BYTE_ADDRESS
Definition flash9.h:116
#define DEMO_TEXT_MESSAGE
Definition main.c:27
void application_task(void)
Definition main.c:69
#define STARTING_ADDRESS
Definition main.c:28

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Flash9

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.