hbridge13 2.1.0.0
Main Page

H-Bridge 13 click

‍H-Bridge 13 Click is a compact add-on board with an H-bridge gate driver, also known as a full-bridge pre-driver. This board features the DRV8411A, a dual H-bridge motor driver with current regulations from Texas Instruments. It can drive one bipolar stepper motor, one or two brushed DC motors, solenoids, and other inductive loads.

click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2023.
  • Type : I2C type

Software Support

We provide a library for the H-Bridge 13 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

‍This library contains API for H-Bridge 13 Click driver.

Standard key functions :

Example key functions :

  • hbridge13_write_reg H-Bridge 13 write register function.
    err_t hbridge13_write_reg ( hbridge13_t *ctx, uint8_t reg, uint8_t data_out );
    err_t hbridge13_write_reg(hbridge13_t *ctx, uint8_t reg, uint8_t data_out)
    H-Bridge 13 write register function.
  • hbridge13_set_direction H-Bridge 13 set direction function.
    err_t hbridge13_set_direction ( hbridge13_t *ctx, uint8_t dir_set, uint8_t speed );
    err_t hbridge13_set_direction(hbridge13_t *ctx, uint8_t dir_set, uint8_t speed)
    H-Bridge 13 set direction function.
  • hbridge13_get_an_voltage H-Bridge 13 get xIPROPI voltage function.
    err_t hbridge13_get_an_voltage ( hbridge13_t *ctx, float *voltage, uint8_t an_sel );
    err_t hbridge13_get_an_voltage(hbridge13_t *ctx, float *voltage, uint8_t an_sel)
    H-Bridge 13 get xIPROPI voltage function.

Example Description

‍This example demonstrates the use of the H-Bridge 13 click board by driving the motor connected to OUT A and OUT B, in both directions with braking and freewheeling.

The demo application is composed of two sections :

Application Init

‍Initializes the driver and performs the click default configuration.

void application_init ( void )
{
log_cfg_t log_cfg;
hbridge13_cfg_t hbridge13_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
hbridge13_cfg_setup( &hbridge13_cfg );
HBRIDGE13_MAP_MIKROBUS( hbridge13_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == hbridge13_init( &hbridge13, &hbridge13_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( HBRIDGE13_ERROR == hbridge13_default_cfg ( &hbridge13 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
#define HBRIDGE13_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition hbridge13.h:161
@ HBRIDGE13_ERROR
Definition hbridge13.h:233
void application_init(void)
Definition main.c:29

Application Task

‍This example is driving a motor in both directions with changes in speed and motor braking and freewheeling in between.

void application_task ( void )
{
for( uint8_t n_cnt = 0; n_cnt <= 100; n_cnt += 10 )
{
log_printf( &logger, " Motor in forward mode with speed of %d %% \r\n", ( uint16_t ) n_cnt );
Delay_ms ( 1000 );
}
log_printf( &logger, " Motor brake is on \r\n" );
hbridge13_set_brake( &hbridge13 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
for( uint8_t n_cnt = 0; n_cnt <= 100; n_cnt += 10 )
{
log_printf( &logger, " Motor in reverse with speed of %d %% \r\n", ( uint16_t ) n_cnt );
Delay_ms ( 1000 );
}
log_printf( &logger, " Motor is coasting \r\n" );
hbridge13_set_coast( &hbridge13 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
#define HBRIDGE13_DIR_REVERSE
Definition hbridge13.h:112
#define HBRIDGE13_DIR_FORWARD
H-Bridge 13 direction setting.
Definition hbridge13.h:111
err_t hbridge13_set_brake(hbridge13_t *ctx)
H-Bridge 13 set brake function.
err_t hbridge13_set_coast(hbridge13_t *ctx)
H-Bridge 13 set coast function.
void application_task(void)
Definition main.c:65

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HBridge13

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.