heater 2.0.0.0
Main Page

Heater click

Heater Click is designed with intention of PCB heater concept testing and useful tool for heating complete casing where staying in specified temperature range is crucial. Exact PCB temperature can be set and controlled using TMP235 on board temperature sensor from Texas Instruments.

click Product page


Click library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : I2C type

Software Support

We provide a library for the heater Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

‍This library contains API for heater Click driver.

Standard key functions :

  • Config Object Initialization function.

    ‍void heater_cfg_setup ( heater_cfg_t *cfg );

    - Initialization function.

    ‍HEATER_RETVAL heater_init ( heater_t *ctx, heater_cfg_t *cfg );

  • Click Default Configuration function.

    ‍void heater_default_cfg ( heater_t *ctx );

Example key functions :

  • This function writes data to the desired register.

    ‍uint16_t heater_read_data ( heater_t *ctx )

  • Read data in mV

    ‍float heater_read_mv ( heater_t *ctx )

  • Read data in C

    ‍float heater_read_temp ( heater_t *ctx )

Examples Description

‍ The devices resolution depends on settings applied. User should consult the datasheet and choose resolution value that corresponds to the settings applied.

The demo application is composed of two sections :

Application Init

‍ Initialization of PWM module and start heating up

void application_init ( void )
{
log_cfg_t log_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----\r\n" );
// Click initialization.
heater_cfg_setup( &cfg, &cfg1 );
HEATER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
heater_init( &heater, &cfg, &cfg1 );
frequency = 500;
heater_set_duty_cycle( &heater, heater.pwm_period );
status_dev = HEATER_HEATING;
log_printf( &logger, " ***** APP INIT ***** \r\n" );
Delay_ms ( 500 );
}
#define HEATER_MAP_MIKROBUS(cfg, mikrobus)
Definition heater.h:68
void heater_cfg_setup(heater_cfg_t *cfg, heater_config_t *cfg1)
Config Object Initialization function.
void heater_set_duty_cycle(heater_t *ctx, float duty_cycle)
Generic sets PWM duty cycle.
HEATER_RETVAL heater_init(heater_t *ctx, heater_cfg_t *cfg, heater_config_t *cfg1)
Initialization function.
void application_init(void)
Definition main.c:40
Click configuration structure definition.
Definition heater.h:147
Definition heater.h:167

Application Task

‍ Durning the task device is heating up to 50 degree C and then cooling down to 40 degree C

void application_task ( void )
{
temp_read = heater_read_temp( &heater );
if ( ( temp_read > HOT_TEMP ) && ( status_dev == HEATER_WAITING ) )
{
status_dev = HEATER_COOLING;
}
else if ( ( temp_read < COOL_TEMP ) && ( status_dev == HEATER_WAITING ) )
{
status_dev = HEATER_HEATING;
}
if ( status_dev == HEATER_HEATING )
{
heater_pwm_start ( &heater );
status_dev = HEATER_WAITING;
}
else if ( status_dev == HEATER_COOLING )
{
heater_pwm_stop ( &heater );
status_dev = HEATER_WAITING;
}
log_printf( &logger, " - Temperature: %.2f %s\r\n", temp_read, log_degree );
log_printf( &logger, "***************\r\n" );
Delay_ms ( 1000 );
}
#define HEATER_LED_ON
Definition heater.h:98
#define HEATER_LED_OFF
Definition heater.h:99
void heater_set_led1_status(heater_t *ctx, uint8_t status)
Sets state of the rst pin.
void heater_pwm_stop(heater_t *ctx)
Stop PWM module.
float heater_read_temp(heater_t *ctx)
Function reads data and converts it to temperature data in degree C.
void heater_set_led2_status(heater_t *ctx, uint8_t status)
Sets state of the cs pin.
void heater_pwm_start(heater_t *ctx)
Start PWM module.
const float HOT_TEMP
Definition main.c:35
void application_task(void)
Definition main.c:72
const float COOL_TEMP
Definition main.c:36

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Heater

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.