iotexpresslink 2.1.0.0
|
IoT ExpressLink Click is a compact add-on board that allows users to easily connected to IoT ExpressLink services and securely interact with cloud applications and other devices. This board features the ESP32-C3-MINI-1-N4-A, a small 2.4GHz WiFi (802.11 b/g/n) and Bluetooth® 5 module from Espressif Systems that use ESP32C3 series of SoC RISCV single-core microprocessor (ESP32-C3FN4) with 4MB flash in a single chip package. The module uses UART communication alongside several other features like the JTAG interface, module wake-up, various operational event detection, additional UART for debugging, and others.
We provide a library for the IoT ExpressLink Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for IoT ExpressLink Click driver.
iotexpresslink_cfg_setup
Config Object Initialization function. iotexpresslink_init
Initialization function. iotexpresslink_reset_device
This function resets device by toggling the RST pin state. iotexpresslink_send_cmd
This function send command string by using UART serial interface. This example demonstrates the use of IoT ExpressLink click board by bridging the USB UART
to mikroBUS UART which allows the click board to establish a connection with the IoT ExpressLink over the Quick Connect demo application without an AWS account.
The demo application is composed of two sections :
Initializes the driver, resets the click board to factory default settings, reads
and displays the vendor model and thing name on the USB UART, sets the WiFi credentials, and attempts to connect to the AWS Cloud. If the initial attempt fails and the error message "Failed to access network" or "Failed to login AWS (MQTT) broker" appears, check the WiFi credentials and try running the example again.
All data received from the USB UART will be forwarded to mikroBUS UART, and vice versa.
At this point you should disconnect from the UART terminal and run the Quick Connect demo application.
To run the demo, follow the below steps:
- If you opened a terminal application in the previous step, be sure to > disconnect that application from the serial port.
- Download the Quick Connect executable:
- Unzip the package, and follow the steps from the README file.
The demo will connect to IoT ExpressLink and give you an URL that you can use to visualize data
flowing from the device to the cloud using AT+SEND commands. The demo will run for up to two minutes, and afterwards, you will be able to type AT+SEND commands yourself and see the data coming in on the visualizer.
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.