leddriver17 2.1.0.0
Main Page

LED Driver 17 click

‍LED Driver 17 Click is a compact add-on board that offers a simple solution for controlling multiple LEDs, making it an ideal choice for various applications. This board features the LTR3755, a highly efficient DC/DC controller from Analog Devices that operates as a constant-current source. It can easily drive high current LEDs and features onboard low-side external N-channel power MOSFETs driven from an internal regulated supply. The LED Driver 17 Click is capable of stable operation over a wide supply range and offers several LED protection features, including overvoltage and overcurrent protection. Additionally, the frequency adjust pin allows users to program the switching frequency from 100kHz to 1MHz, optimizing efficiency and performance.

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jan 2023.
  • Type : PWM type

Software Support

We provide a library for the LED Driver 17 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

‍This library contains API for LED Driver 17 Click driver.

Standard key functions :

Example key functions :

Example Description

‍This example demonstrates the use of LED Driver 17 click board by changing the LEDs dimming level.

The demo application is composed of two sections :

Application Init

‍Initializes the driver and performs the click default configuration.

void application_init ( void )
{
log_cfg_t log_cfg;
leddriver17_cfg_t leddriver17_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
leddriver17_cfg_setup( &leddriver17_cfg );
LEDDRIVER17_MAP_MIKROBUS( leddriver17_cfg, MIKROBUS_1 );
if ( PWM_ERROR == leddriver17_init( &leddriver17, &leddriver17_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( LEDDRIVER17_ERROR == leddriver17_default_cfg ( &leddriver17 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
#define LEDDRIVER17_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition leddriver17.h:91
@ LEDDRIVER17_ERROR
Definition leddriver17.h:139
void application_init(void)
Definition main.c:30

Application Task

‍Changes the LEDs dimming level by setting the PWM duty cycle every 500ms. The duty cycle percentage will be displayed on the USB UART.

It also checks the fault indication pin and displays it accordingly.

void application_task ( void )
{
static int8_t duty_cnt = 1;
static int8_t duty_inc = 1;
float duty = duty_cnt / 10.0;
if ( !leddriver17_get_fault_pin ( &leddriver17 ) )
{
log_printf( &logger, " Fault detected!\r\n" );
}
leddriver17_set_duty_cycle ( &leddriver17, duty );
log_printf( &logger, " Duty: %u%%\r\n\n", ( uint16_t ) ( duty_cnt * 10 ) );
Delay_ms ( 500 );
if ( 10 == duty_cnt )
{
duty_inc = -1;
}
else if ( 0 == duty_cnt )
{
duty_inc = 1;
}
duty_cnt += duty_inc;
}
void application_task(void)
Definition main.c:66

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LEDDriver17

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.