magneticrotary5 2.1.0.0
Main Page

Magnetic Rotary 5 click

‍Magnetic Rotary 5 Click is a compact add-on board for accurate magnet-position sensing. This board features the AS5134, a contactless magnetic rotary encoder from ams AG for accurate angular measurement over a full turn of 360ยบ. It is designed to provide accurate angle measurements with a simple two-pole magnet rotating over the center of the chip, featuring an integrated Hall element, analog front end, and digital signal processing. Offering a high resolution of 8.5 bits, which equates to 360 positions per revolution, it is also capable of high-speed performance, with a maximum RPM of 76875. It can accommodate a wide range of magnetic fields, from 20 to 80mT. It also has an onboard header for incremental and commutation signals of their respective A/B/I and U/V/W signals and pins for Daisy Chain Mode and OTP programming.

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Sep 2022.
  • Type : ADC/GPIO type

Software Support

We provide a library for the Magnetic Rotary 5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

‍This library contains API for Magnetic Rotary 5 Click driver.

Standard key functions :

Example key functions :

  • magneticrotary5_read_angle This function reads the magnetic angle and automatic gain control (AGC) values measured by the sensor.
    err_t magneticrotary5_read_angle ( magneticrotary5_t *ctx, uint8_t *agc, uint16_t *angle );
    err_t magneticrotary5_read_angle(magneticrotary5_t *ctx, uint8_t *agc, uint16_t *angle)
    Magnetic Rotary 5 read angle function.
  • magneticrotary5_read_mt_cnt This function reads the multi turn counter value. With each zero transition in any direction, the output of a special counter is incremented or decremented.
    err_t magneticrotary5_read_mt_cnt ( magneticrotary5_t *ctx, int16_t *mt_cnt );
    err_t magneticrotary5_read_mt_cnt(magneticrotary5_t *ctx, int16_t *mt_cnt)
    Magnetic Rotary 5 read multi turn counter function.
  • magneticrotary5_read_voltage This function reads raw ADC value and converts it to proportional voltage level.
    err_t magneticrotary5_read_voltage ( magneticrotary5_t *ctx, float *voltage );
    err_t magneticrotary5_read_voltage(magneticrotary5_t *ctx, float *voltage)
    Magnetic Rotary 5 read voltage level function.

Example Description

‍This example demonstrates the use of Magnetic Rotary 5 click board by reading and displaying

the magnet angular position as well as the AGC and multi turn counter values.

The demo application is composed of two sections :

Application Init

‍Initializes the driver and resets the multi turn counter to zero.

void application_init ( void )
{
log_cfg_t log_cfg;
magneticrotary5_cfg_t magneticrotary5_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
magneticrotary5_cfg_setup( &magneticrotary5_cfg );
MAGNETICROTARY5_MAP_MIKROBUS( magneticrotary5_cfg, MIKROBUS_1 );
if ( ADC_ERROR == magneticrotary5_init( &magneticrotary5, &magneticrotary5_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( MAGNETICROTARY5_ERROR == magneticrotary5_default_cfg ( &magneticrotary5 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
#define MAGNETICROTARY5_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition magneticrotary5.h:134
@ MAGNETICROTARY5_ERROR
Definition magneticrotary5.h:180
void application_init(void)
Definition main.c:30

Application Task

‍Reads the magnet angular position in degrees as well as the voltage from AN pin which is

proportional to the angular position. Also reads the AGC and multi turn counter values. The results will be displayed on the USB UART every 100ms approximately.

void application_task ( void )
{
uint8_t agc = 0;
uint16_t angle = 0;
int16_t mt_cnt = 0;
float voltage = 0;
if ( MAGNETICROTARY5_OK == magneticrotary5_read_angle ( &magneticrotary5, &agc, &angle ) )
{
log_printf ( &logger, "\r\n AGC: %u\r\n Angle: %u\r\n", ( uint16_t ) agc, angle );
}
if ( MAGNETICROTARY5_OK == magneticrotary5_read_mt_cnt ( &magneticrotary5, &mt_cnt ) )
{
log_printf ( &logger, " Multi turn counter: %d\r\n", mt_cnt );
}
if ( MAGNETICROTARY5_OK == magneticrotary5_read_voltage ( &magneticrotary5, &voltage ) )
{
log_printf( &logger, " AN Voltage : %.3f V\r\n", voltage );
}
Delay_ms ( 100 );
}
@ MAGNETICROTARY5_OK
Definition magneticrotary5.h:179
void application_task(void)
Definition main.c:66

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.MagneticRotary5

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.