rs232isolator2 2.0.0.0
Main Page

RS232 Isolator 2 click

RS232 Isolator 2 Click is a compact add-on board that contains a fully isolated transceiver used to provide secure and easy UART to RS232 conversion. This board features the ICL3221, a 3.3V powered RS232 transmitter/receiver that provides ±15kV ESD protection on its RS232 pins from Renesas. This Click board™ is characterized by an assured minimum data rate of 250kbps. It features an automatic power-down function and uses high-speed digital optocouplers to isolate the RS232 interface for 3.75kV isolation. It also possesses an LED indicator that indicates a valid RS232 signal at any of the receiver inputs. This Click board™ is suitable for isolation of RS232 signals, portable equipment, and where the low operational power consumption and even lower standby power consumption are critical.

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Jan 2021.
  • Type : UART type

Software Support

We provide a library for the Rs232Isolator2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

‍This library contains API for Rs232Isolator2 Click driver.

Standard key functions :

Example key functions :

Example Description

‍This library contains API for RS 232 Isolator 2 Click driver. This example transmits/receives and processes data from RS 232 Isolator 2 clicks. The library initializes and defines the UART bus drivers to transmit or receive data.

The demo application is composed of two sections :

Application Init

‍Initializes driver and wake-up module.

void application_init ( void ) {
log_cfg_t log_cfg;
rs232isolator2_cfg_t rs232isolator2_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
rs232isolator2_cfg_setup( &rs232isolator2_cfg );
RS232ISOLATOR2_MAP_MIKROBUS( rs232isolator2_cfg, MIKROBUS_1 );
err_t init_flag = rs232isolator2_init( &rs232isolator2, &rs232isolator2_cfg );
if ( init_flag == UART_ERROR ) {
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
app_buf_len = 0;
app_buf_cnt = 0;
log_info( &logger, " Application Task " );
#ifdef TRANSMITTER
log_printf( &logger, " Send data: \r\n" );
log_printf( &logger, " mikroE \r\n" );
log_printf( &logger, "------------------\r\n" );
log_printf( &logger, " Transmit data \r\n" );
Delay_ms ( 1000 );
#endif
#ifdef RECIEVER
log_printf( &logger, " Receive data \r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
#endif
log_printf( &logger, "------------------\r\n" );
}
#define RS232ISOLATOR2_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition rs232isolator2.h:92
void application_init(void)
Definition main.c:67

Application Task

‍Transmitter/Receiver task depend on uncommented code. Receiver logging each received byte to the UART for data logging, while transmitted send messages every 2 seconds.

void application_task ( void ) {
#ifdef TRANSMITTER
log_printf( &logger, "%s", demo_message );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "------------------\r\n" );
#endif
#ifdef RECIEVER
rs232isolator2_process( );
if ( app_buf_len > 0 ) {
log_printf( &logger, "%s", app_buf );
rs232isolator2_clear_app_buf( );
}
#endif
}
unsigned char demo_message[9]
Definition main.c:45
void application_task(void)
Definition main.c:121

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Rs232Isolator2

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all Mikroelektronika compilers.