se051plugntrust 2.1.0.0
Main Page

SE051 Plug n Trust click

‍SE051 Plug&Trust Click is a compact add-on board representing a ready-to-use IoT security solution. This board features the SE051C2, an updatable extension of the EdgeLockâ„¢ SE050 from NXP Semiconductor, which delivers proven security certified to CC EAL 6+, with AVA_VAN.5up to the OS level. Designed for the latest IoT security requirements, it allows securely storing and provisioning credentials performing cryptographic operations, giving edge-to-cloud security capability right out of the box. It also provides upgrade functionality of the IoT applet while preserving on-device credentials, alongside reconfiguration possibility.

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Aug 2022.
  • Type : I2C type

Software Support

We provide a library for the SE051 Plug n Trust Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

‍This library contains API for SE051 Plug n Trust Click driver.

Standard key functions :

Example key functions :

Example Description

‍This application is showcasing basic functionality of SE051 Plug&Trust click board.

It gets identify data from device, selects card manager and applet. Then checks free memory, reads all objects and deletes not reserved ones. After that showcases a few of functionality: Generating random data, Creating, reading and deleting binary objects, Creating AES symmetrical key and cipher with it; In the end it is showcasing funcionality in the endless loop.

The demo application is composed of two sections :

Application Init

‍At the start it sets comunication interface to I2C and resets the chip,

reads identifying data from device, and then selects card manager and applet. After that it reads free persistent memory, reads all objects and deletes objects that are not reserved by the Applet. Then it generates 2 byte of random data, and gets the version information from the Applet. That's followed up with creating binary object with 'MikroE' data inside. Then it checks if object is created and reads data back. After that, the object is deleted and it's checked if it still exists. Finally it creates 128AES key (16bytes), encrypts it and then decrypts data with that key, and in the end it deletes that key object.

void application_init ( void )
{
log_cfg_t log_cfg;
se051plugntrust_cfg_t se051plugntrust_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
se051plugntrust_cfg_setup( &se051plugntrust_cfg );
SE051PLUGNTRUST_MAP_MIKROBUS( se051plugntrust_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == se051plugntrust_init( &se051plugntrust, &se051plugntrust_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
frame_data.apdu = &apdu_data;
se051plugntrust.interface = SE051PLUGNTRUST_INTERFACE_I2C;
se051plugntrust_reset( &se051plugntrust );
if ( SE051PLUGNTRUST_INTERFACE_ISO14443 == se051plugntrust.interface )
{
log_info( &logger, " ISO14443 Interface active..." );
for ( ; ; );
}
soft_reset( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
get_data_identify( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
select_card_manger( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
select_applet( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
check_free_memory( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
list_and_delete_objects( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
get_random( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
read_uid_object( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
get_version( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
create_check_delete( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
aes_cipher( );
log_info( &logger, " Application Task " );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
#define SE051PLUGNTRUST_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition se051plugntrust.h:595
#define SE051PLUGNTRUST_INTERFACE_I2C
Definition se051plugntrust.h:563
#define SE051PLUGNTRUST_INTERFACE_ISO14443
Communication interface settings.
Definition se051plugntrust.h:562
void se051plugntrust_reset(se051plugntrust_t *ctx)
Reset function.
void application_init(void)
Definition main.c:222

Application Task

‍It generates 16bytes of data, writes it in binary object and then reads it back and displays

on the USB UART. Then creates AES key and encrypts that generated data with it, and then decrypts it. In the end it deletes both AES key object and binary object that's created at the start of the task.

void application_task ( void )
{
#define DATA_LEN 16
static uint8_t aes_value[ DATA_LEN ] = { 0x40, 0x41, 0x42, 0x43,0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4A, 0x4B,0x4C, 0x4D, 0x4E, 0x4F };
static uint32_t binary_id = 0xBBBBBBBB;
static uint32_t aes_id = 0xCCCCCCCC;
uint8_t random_data[ DATA_LEN ] = { 0 };
uint8_t read_data[ DATA_LEN ] = { 0 };
uint8_t encrypted_data[ DATA_LEN ] = { 0 };
uint32_t read_len = DATA_LEN;
if ( SE051PLUGNTRUST_OK == se051plugntrust_get_random_numbers( &se051plugntrust, random_data, DATA_LEN ) )
{
log_printf( &logger, " > Generated random data: 0x" );
log_buf_hex( random_data, DATA_LEN );
log_printf( &logger, "\r\n" );
}
else
{
log_error( &logger, " Random" );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
{
log_printf( &logger, " Write random data to binary object...\r\n" );
if ( SE051PLUGNTRUST_OK != se051plugntrust_write_binary_object( &se051plugntrust, binary_id,
0, DATA_LEN, random_data ) )
{
log_error( &logger, " Write Binary" );
}
else
{
log_info( &logger, " Status OK" );
}
}
else
{
log_error( &logger, " Binary object already exist" );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
{
if ( SE051PLUGNTRUST_OK == se051plugntrust_read_object( &se051plugntrust, binary_id, 0, 0,
read_data, &read_len ) )
{
log_printf( &logger, " > Read data from binary object: 0x" );
log_buf_hex( read_data, read_len );
log_printf( &logger, "\r\n" );
}
else
{
log_error( &logger, " Read binray object" );
}
}
else
{
log_error( &logger, " Binary object doesn't exist" );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, " Create AES key...\r\n" );
create_128_aes_key( aes_id, aes_value );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
if ( SE051PLUGNTRUST_OK == cipher_data_with_aes_key( aes_id, SE051PLUGNTRUST_P2_ENCRYPT_ONESHOT,
read_data, encrypted_data ) )
{
log_printf( &logger, " > Encrypted data: 0x" );
log_buf_hex( encrypted_data, DATA_LEN );
log_printf( &logger, "\r\n" );
}
else
{
log_error( &logger, " Encrypting data" );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
if ( SE051PLUGNTRUST_OK == cipher_data_with_aes_key( aes_id, SE051PLUGNTRUST_P2_DECRYPT_ONESHOT,
encrypted_data, read_data ) )
{
log_printf( &logger, " > Decrypted data: 0x" );
log_buf_hex( read_data, DATA_LEN );
log_printf( &logger, "\r\n" );
}
else
{
log_error( &logger, " Decrypting data" );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, " Delete Binary and AES object...\r\n" );
if ( ( SE051PLUGNTRUST_OK != se051plugntrust_delete_object( &se051plugntrust, binary_id ) ) ||
( SE051PLUGNTRUST_OK != se051plugntrust_delete_object( &se051plugntrust, aes_id ) ) )
{
log_error( &logger, " Deleting objects" );
}
log_printf( &logger, "*****************************************************************************\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
#define SE051PLUGNTRUST_P2_ENCRYPT_ONESHOT
Definition se051plugntrust.h:221
#define SE051PLUGNTRUST_OBJECT_DOESNT_EXIST
Definition se051plugntrust.h:528
#define SE051PLUGNTRUST_P2_DECRYPT_ONESHOT
Definition se051plugntrust.h:222
#define SE051PLUGNTRUST_OBJECT_DOES_EXISTS
Check object exist.
Definition se051plugntrust.h:527
err_t se051plugntrust_get_random_numbers(se051plugntrust_t *ctx, uint8_t *random_buf, uint8_t buf_len)
Get random data.
err_t se051plugntrust_delete_object(se051plugntrust_t *ctx, uint32_t object_id)
Delete object.
err_t se051plugntrust_check_object_exist(se051plugntrust_t *ctx, uint32_t object_id)
Check if object exists.
err_t se051plugntrust_read_object(se051plugntrust_t *ctx, uint32_t object_id, uint16_t offset, uint16_t read_len, uint8_t *data_buf, uint32_t *data_len)
Read object data.
err_t se051plugntrust_write_binary_object(se051plugntrust_t *ctx, uint32_t object_id, uint16_t offset, uint16_t data_len, uint8_t *data_buf)
Create/Write to binary object.
void application_task(void)
Definition main.c:299
#define DATA_LEN
@ SE051PLUGNTRUST_OK
Definition se051plugntrust.h:715

Note

‍For more information refer to documents from NXP: AN12413 and UM11225.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SE051PlugnTrust

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.