smartsens2 2.0.0.0
Main Page

Smart Sens 2 click

‍Smart Sens 2 Click is a compact add-on board that contains a smart sensor system with an integrated IMU sensor. This board utilizes the BHI260AP, BME688, BMP390, and BMM150, an ultra-low-power programmable smart sensor, environmental and pressure sensor, and a magnetometer from Bosch Sensortec. The BHI260AP includes a powerful 32-bit MCU and a 6-axis IMU (3-axis accelerometer and 3-axis gyroscope) alongside an event-driven software framework. In addition to its internal functions also perform signal data processing from several onboard sensors performing measurements of various parameters such as an environmental and magnetic field. In addition to these primary functions, this Click boardâ„¢ allows users to select the desired serial interface, use the debug interface, and select BOOT mode.

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jan 2022.
  • Type : I2C/SPI type

Software Support

We provide a library for the Smart Sens 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

‍This library contains API for Smart Sens 2 Click driver.

Standard key functions :

Example key functions :

Example Description

‍This example showcases the ability of the Smart Sens 2 click board.

It has multiple examples that you can easily select with the defines at the top of the main. There are 9 examples: Euler, Quaternion, Vector (Accelerometer, Gyroscope, Magnetometer), and Environmental (Temperature, Barometer, Humidity, Gas).

The demo application is composed of two sections :

Application Init

‍Initialization of communication modules (SPI/I2C) and additional

pins(int_pin, rst). After that going through reset sequence and checking device and product IDs, interrupt mask, and host control is set to 0, so every interrupt enabled. If boot status is OK boot sequence is initiated, depending on the defines from the library header it will use RAM or Flash type of the boot. If RAM is selected firmware image first needs to be uploaded to RAM and then it will be booted. If Flash example is selected it will try to boot firmware first if it fails it will then write firmware image to flash and then try to boot it again. When firmware boot is finished Kernel version and Feature registers will be read to check if the firmware is loaded. Then all the callback function will be registered(meta event callback and whatever type of example parser you set), and driver will update the list of virtual sensors present, and finally will configure virtual sensor that will be used in the selected example.

void application_init ( void )
{
log_cfg_t log_cfg;
smartsens2_cfg_t smartsens2_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
smartsens2_cfg_setup( &smartsens2_cfg );
SMARTSENS2_MAP_MIKROBUS( smartsens2_cfg, MIKROBUS_1 );
err_t init_flag = smartsens2_init( &smartsens2, &smartsens2_cfg );
if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
/* It can take a few seconds to configure and boot device */
log_info( &logger, " Configuring device..." );
if ( SMARTSENS2_ERROR == smartsens2_default_cfg ( &smartsens2 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Setting callbacks..." );
/* Set callbacks */
parse_meta_event, &accuracy ) )
{
log_error( &logger, " FIFO sys meta event." );
for ( ; ; );
}
parse_meta_event, &accuracy ) )
{
log_error( &logger, " FIFO sys meta event wu." );
for ( ; ; );
}
uint8_t sensor_id;
void *callback_ref;
#if EULER
callback = parse_euler;
callback_ref = &accuracy;
#elif QUATERNION
callback = parse_quaternion;
callback_ref = NULL;
#elif VECTOR
#if ACCELEROMETER
parse_table.sensor[ SMARTSENS2_SENSOR_ID_ACC ].scaling_factor = 1.0f / 4096.0f;
#elif GYROSCOPE
parse_table.sensor[ SMARTSENS2_SENSOR_ID_GYRO ].scaling_factor = 1.0f;
#elif MAGNETOMETER
parse_table.sensor[ SMARTSENS2_SENSOR_ID_MAG ].scaling_factor = 1.0f;
#else
#error NO_VECTOR_EXAMPLE_DEFINED
#endif
callback = parse_vector_s16;
callback_ref = &parse_table;
#elif ENVIRONMENTAL
#if TEMPERATURE
callback = parse_temperature;
#elif BAROMETER
callback = parse_barometer;
#elif HUMIDITY
callback = parse_humidity;
#elif GAS
callback = parse_gas;
#else
#error NO_ENVIRONMENTAL_EXAMPLE_DEFINED
#endif
callback_ref = NULL;
#else
#error NO_EXAMPLE_DEFINED
#endif
if ( smartsens2_register_fifo_parse_callback( &smartsens2, sensor_id, callback, callback_ref ) )
{
log_error( &logger, " FIFO sensor id." );
for ( ; ; );
}
/* Go through fifo process */
{
log_error( &logger, " FIFO get and process." );
for ( ; ; );
}
/* Update virtual sensor list in context object */
{
log_error( &logger, " Update virtual sensor list." );
for ( ; ; );
}
/* Set virtual sensor configuration */
float sample_rate = 10.0; /* Read out data at 10Hz */
uint32_t report_latency_ms = 0; /* Report immediately */
if ( smartsens2_set_virt_sensor_cfg( &smartsens2, sensor_id, sample_rate, report_latency_ms ) )
{
log_error( &logger, " Set virtual sensor configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
#define SMARTSENS2_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition smartsens2.h:440
#define SMARTSENS2_SENSOR_ID_GAS
Definition smartsens2.h:248
#define SMARTSENS2_SENSOR_ID_TEMP
Definition smartsens2.h:245
#define SMARTSENS2_SENSOR_ID_HUM
Definition smartsens2.h:247
#define SMARTSENS2_SYS_ID_META_EVENT
Definition smartsens2.h:272
#define SMARTSENS2_SYS_ID_META_EVENT_WU
Definition smartsens2.h:276
#define SMARTSENS2_SENSOR_ID_ACC
Definition smartsens2.h:199
#define SMARTSENS2_SENSOR_ID_MAG
Definition smartsens2.h:211
#define SMARTSENS2_SENSOR_ID_RV
Definition smartsens2.h:219
#define SMARTSENS2_SENSOR_ID_GYRO
Definition smartsens2.h:205
#define SMARTSENS2_SENSOR_ID_BARO
Definition smartsens2.h:246
#define SMARTSENS2_SENSOR_ID_ORI
Definition smartsens2.h:225
err_t smartsens2_update_virtual_sensor_list(smartsens2_t *ctx)
Update the callback table's information.
void application_init(void)
Definition main.c:213
#define WORK_BUFFER_SIZE
Definition main.c:73
uint8_t accuracy
Definition main.c:77
@ SMARTSENS2_ERROR
Definition smartsens2.h:630

Application Task

‍Wait for an interrupt to occur, then read wake-up, non-weak-up, and status FIFO.

Parse received data and run the callback parsers to show data on the USB UART.

void application_task ( void )
{
/* Check interrupt and get and process fifo buffer */
if ( smartsens2_get_interrupt( &smartsens2 ) )
{
/* Data from the FIFO is read and the relevant callbacks if registered are called */
{
log_error( &logger, " Get and process fifo." );
for ( ; ; );
}
}
}
uint8_t smartsens2_get_interrupt(smartsens2_t *ctx)
Get interrupt.
void application_task(void)
Definition main.c:337

Note

‍Select one of the examples with macros at the top of the main file. Euler example is selected by default.

You can choose one of 4 type of parsers: Euler, Quaternion, Vector, Environmental. If Vector example is selected you choose one of the 3 sensors to show X, Y, and Z values: Accelerometer, Gyroscope, or Magnetometer. If Environmental example is selected you choose one of the 4 sensors: Temperature, Barometer, Humidity, or Gas.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SmartSens2

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.