6DOF IMU 15 click
6DOF IMU 15 Click is a compact add-on board that contains a 6-axis MEMS motion tracking device combining a 3-axis gyroscope and a 3-axis accelerometer.
click Product page
Click library
- Author : MikroE Team
- Date : Sep 2020.
- Type : I2C/SPI type
Software Support
We provide a library for the 6DofImu15 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
Library Description
This library contains API for 6DofImu15 Click driver.
Standard key functions :
- Config Object Initialization function.
void c6dofimu15_cfg_setup ( c6dofimu15_cfg_t *cfg );
- Initialization function.
C6DOFIMU15_RETVAL c6dofimu15_init ( c6dofimu15_t *ctx, c6dofimu15_cfg_t *cfg );
- Click Default Configuration function.
void c6dofimu15_default_cfg ( c6dofimu15_t *ctx );
Example key functions :
- Enable the proper device configuration function
void c6dofimu15_device_conf_set ( c6dofimu15_t *ctx, uint8_t dev_cfg );
- Accelerometer data rate selection function
void c6dofimu15_accel_data_rate ( c6dofimu15_t *ctx, uint8_t data_rate );
- Accelerometer full-scale selection function
void c6dofimu15_accel_full_scale ( c6dofimu15_t *ctx, uint8_t fs_sel );
Examples Description
This example demonstrates the use of 6DOF IMU 15 click board.
The demo application is composed of two sections :
Application Init
Initializes the driver, checks the communication and sets the device default configuration.
{
log_cfg_t log_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
Delay_ms ( 100 );
{
log_printf( &logger, "---------------------- \r\n" );
log_printf( &logger, " 6DOF IMU 15 click \r\n" );
log_printf( &logger, "---------------------- \r\n" );
}
else
{
log_printf( &logger, "---------------------- \r\n" );
log_printf( &logger, " FATAL ERROR!! \r\n" );
log_printf( &logger, "---------------------- \r\n" );
for ( ; ; );
}
log_printf( &logger, " ---Initialised--- \r\n" );
log_printf( &logger, "---------------------- \r\n" );
Delay_ms ( 100 );
}
#define C6DOFIMU15_MAP_MIKROBUS(cfg, mikrobus)
Definition c6dofimu15.h:68
void c6dofimu15_default_cfg(c6dofimu15_t *ctx)
Click Default Configuration function.
void c6dofimu15_cfg_setup(c6dofimu15_cfg_t *cfg)
Config Object Initialization function.
C6DOFIMU15_RETVAL c6dofimu15_init(c6dofimu15_t *ctx, c6dofimu15_cfg_t *cfg)
Initialization function.
uint8_t c6dofimu15_who_im_i(c6dofimu15_t *ctx)
Who Am I function.
void application_init(void)
Definition main.c:33
Click configuration structure definition.
Definition c6dofimu15.h:621
Application Task
Measures acceleration and gyroscope data and displays the results on USB UART each second.
{
float x_accel;
float y_accel;
float z_accel;
float x_gyro;
float y_gyro;
float z_gyro;
log_printf( &logger, " Accel X: %.2f \t Gyro X: %.2f\r\n", x_accel, x_gyro );
log_printf( &logger, " Accel Y: %.2f \t Gyro Y: %.2f\r\n", y_accel, y_gyro );
log_printf( &logger, " Accel Z: %.2f \t Gyro Z: %.2f\r\n", z_accel, z_gyro );
log_printf( &logger, "----------------------------------\r\n");
Delay_ms ( 1000 );
}
void c6dofimu15_acceleration_rate(c6dofimu15_t *ctx, float *x_acel_rte, float *y_acel_rte, float *z_acel_rte)
Read Acceleration Rate function.
void c6dofimu15_angular_rate(c6dofimu15_t *ctx, float *x_ang_rte, float *y_ang_rte, float *z_ang_rte)
Read Angular Rate function.
void application_task(void)
Definition main.c:80
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.6DofImu15
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.