H-Bridge 11 click
H-Bridge 11 Click is a compact add-on board that allows a voltage to be applied across a load in either direction. This board features the MAX22200, an octal serial-controlled solenoid and motor driver from Analog Devices. The MAX22200 is SPI-configurable and rated for an operating voltage range from 4.5V to 36V. Each channel features a low impedance push-pull output stage with sink-and-source driving capability up to 1A RMS driving current. Its internal half-bridges can be configured as low-side or high-side drivers, supports two control methods (voltage and current drive regulation), and features a full set of protections and diagnostic functions.
click Product page
Click library
- Author : Stefan Filipovic
- Date : Feb 2023.
- Type : SPI type
Software Support
We provide a library for the H-Bridge 11 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Library Description
This library contains API for H-Bridge 11 Click driver.
Standard key functions :
hbridge11_cfg_setup
Config Object Initialization function.
void hbridge11_cfg_setup(hbridge11_cfg_t *cfg)
H-Bridge 11 configuration object setup function.
H-Bridge 11 Click configuration object.
Definition hbridge11.h:284
hbridge11_init
Initialization function.
err_t hbridge11_init(hbridge11_t *ctx, hbridge11_cfg_t *cfg)
H-Bridge 11 initialization function.
H-Bridge 11 Click context object.
Definition hbridge11.h:264
hbridge11_default_cfg
Click Default Configuration function.
err_t hbridge11_default_cfg(hbridge11_t *ctx)
H-Bridge 11 default configuration function.
Example key functions :
hbridge11_get_fault_pin
This function returns the fault pin logic state.
uint8_t hbridge11_get_fault_pin(hbridge11_t *ctx)
H-Bridge 11 get fault pin function.
hbridge11_read_flags
This function reads and clears the fault flags from the status register.
err_t hbridge11_read_flags(hbridge11_t *ctx, uint8_t *fault_flags)
H-Bridge 11 read flags function.
hbridge11_set_motor_state
This function sets the operating state for the selected motor from the half-bridge pairs 0-1, 2-3, 4-5, or 6-7.
err_t hbridge11_set_motor_state(hbridge11_t *ctx, uint8_t motor, uint8_t state)
H-Bridge 11 set motor state function.
Example Description
This example demonstrates the use of the H-Bridge 11 click board by driving the DC motors connected between OUT0-OUT1 and OUT2-OUT3 in both directions.
The demo application is composed of two sections :
Application Init
Initializes the driver and performs the click default configuration.
{
log_cfg_t log_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
if ( SPI_MASTER_ERROR ==
hbridge11_init( &hbridge11, &hbridge11_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
#define HBRIDGE11_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition hbridge11.h:247
@ HBRIDGE11_ERROR
Definition hbridge11.h:310
void application_init(void)
Definition main.c:38
Application Task
Drives the motors connected between OUT0-OUT1 and OUT2-OUT3 in both directions in the span of 12 seconds, and logs data on the USB UART where you can track the program flow.
{
log_printf( &logger, "\r\n MOTOR 0: FORWARD\r\n" );
log_printf( &logger, " MOTOR 1: FORWARD\r\n" );
hbridge11_check_fault ( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "\r\n MOTOR 0: BRAKE\r\n" );
log_printf( &logger, " MOTOR 1: BRAKE\r\n" );
hbridge11_check_fault ( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "\r\n MOTOR 0: REVERSE\r\n" );
log_printf( &logger, " MOTOR 1: REVERSE\r\n" );
hbridge11_check_fault ( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "\r\n MOTOR 0: DISCONNECTED\r\n" );
log_printf( &logger, " MOTOR 1: DISCONNECTED\r\n" );
hbridge11_check_fault ( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
#define HBRIDGE11_MOTOR_STATE_REVERSE
Definition hbridge11.h:217
#define HBRIDGE11_MOTOR_STATE_BRAKE
Definition hbridge11.h:218
#define HBRIDGE11_MOTOR_SEL_0
H-Bridge 11 motor selection setting.
Definition hbridge11.h:206
#define HBRIDGE11_MOTOR_STATE_FORWARD
Definition hbridge11.h:216
#define HBRIDGE11_MOTOR_STATE_HI_Z
H-Bridge 11 motor state setting.
Definition hbridge11.h:215
#define HBRIDGE11_MOTOR_SEL_1
Definition hbridge11.h:207
void application_task(void)
Definition main.c:73
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.HBridge11
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.