mram4 2.1.0.0
Main Page

MRAM 4 click

‍MRAM 4 Click is a compact add-on board representing a magneto-resistive random-access memory solution. This board features the EM064LX, an industrial STT-MRAM persistent memory from Everspin Technologies. It is a 64Mb MRAM IC RAM and can achieve up to 200MHz as a single and double data rate (STR/DTR). The MRAM technology is analog to Flash technology with SRAM-compatible read/write timings (Persistent SRAM, P-SRAM), where data is always non-volatile. It also has a hardware write-protection feature and performs read and write operations with data retention for ten years and unlimited read, write, and erase operations for the supported life of the chip.

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Aug 2023.
  • Type : SPI type

Software Support

We provide a library for the MRAM 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

‍This library contains API for MRAM 4 Click driver.

Standard key functions :

  • mram4_cfg_setup Config Object Initialization function.
    void mram4_cfg_setup(mram4_cfg_t *cfg)
    MRAM 4 configuration object setup function.
    MRAM 4 Click configuration object.
    Definition mram4.h:251
  • mram4_init Initialization function.
    err_t mram4_init ( mram4_t *ctx, mram4_cfg_t *cfg );
    err_t mram4_init(mram4_t *ctx, mram4_cfg_t *cfg)
    MRAM 4 initialization function.
    MRAM 4 Click context object.
    Definition mram4.h:234
  • mram4_default_cfg Click Default Configuration function.
    err_t mram4_default_cfg ( mram4_t *ctx );
    err_t mram4_default_cfg(mram4_t *ctx)
    MRAM 4 default configuration function.

Example key functions :

  • mram4_memory_write MRAM 4 memory write function.
    err_t mram4_memory_write ( mram4_t *ctx, uint32_t mem_addr, uint8_t *data_in, uint8_t len );
    err_t mram4_memory_write(mram4_t *ctx, uint32_t mem_addr, uint8_t *data_in, uint8_t len)
    MRAM 4 memory write function.
  • mram4_memory_read MRAM 4 memory read function.
    err_t mram4_memory_read ( mram4_t *ctx, uint32_t mem_addr, uint8_t *data_out, uint8_t len );
    err_t mram4_memory_read(mram4_t *ctx, uint32_t mem_addr, uint8_t *data_out, uint8_t len)
    MRAM 4 memory read function.
  • mram4_block_erase MRAM 4 block erase function.
    err_t mram4_block_erase ( mram4_t *ctx, uint8_t cmd_block_erase, uint32_t mem_addr );
    err_t mram4_block_erase(mram4_t *ctx, uint8_t cmd_block_erase, uint32_t mem_addr)
    MRAM 4 block erase function.

Example Description

‍This example demonstrates the use of MRAM 4 click board. The demo app writes specified data to the memory and reads it back.

The demo application is composed of two sections :

Application Init

‍The initialization of SPI module, log UART, and additional pins. After the driver init, the app executes a default configuration.

void application_init ( void )
{
log_cfg_t log_cfg;
mram4_cfg_t mram4_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
mram4_cfg_setup( &mram4_cfg );
MRAM4_MAP_MIKROBUS( mram4_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == mram4_init( &mram4, &mram4_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( MRAM4_ERROR == mram4_default_cfg ( &mram4 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
Delay_ms ( 100 );
log_info( &logger, " Application Task " );
log_printf( &logger, "-----------------------\r\n" );
Delay_ms ( 100 );
}
#define MRAM4_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition mram4.h:218
void application_init(void)
Definition main.c:36
@ MRAM4_ERROR
Definition mram4.h:276

Application Task

‍The demo application writes a desired number of bytes to the memory and then verifies if it is written correctly by reading from the same memory location and displaying the memory content. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{
uint8_t data_buf[ 128 ] = { 0 };
log_printf( &logger, " Memory address: 0x%.6LX\r\n", ( uint32_t ) STARTING_ADDRESS );
{
log_printf( &logger, " Erase memory block (4KB)\r\n" );
Delay_ms ( 100 );
}
memcpy( data_buf, DEMO_TEXT_MESSAGE_1, strlen( DEMO_TEXT_MESSAGE_1 ) );
if ( MRAM4_OK == mram4_memory_write( &mram4, STARTING_ADDRESS, data_buf, sizeof( data_buf ) ) )
{
log_printf( &logger, " Write data: %s\r\n", data_buf );
Delay_ms ( 100 );
}
memset( data_buf, 0, sizeof( data_buf ) );
if ( MRAM4_OK == mram4_memory_read( &mram4, STARTING_ADDRESS, data_buf, sizeof( data_buf ) ) )
{
log_printf( &logger, " Read data: %s\r\n", data_buf );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
log_printf( &logger, " ----------------------------\r\n" );
log_printf( &logger, " Memory address: 0x%.6LX\r\n", ( uint32_t ) STARTING_ADDRESS );
{
log_printf( &logger, " Erase memory block (4KB)\r\n" );
}
memcpy( data_buf, DEMO_TEXT_MESSAGE_2, strlen( DEMO_TEXT_MESSAGE_2 ) );
if ( MRAM4_OK == mram4_memory_write( &mram4, STARTING_ADDRESS, data_buf, sizeof( data_buf ) ) )
{
log_printf( &logger, " Write data: %s\r\n", data_buf );
Delay_ms ( 100 );
}
memset( data_buf, 0, sizeof( data_buf ) );
if ( MRAM4_OK == mram4_memory_read( &mram4, STARTING_ADDRESS, data_buf, sizeof( data_buf ) ) )
{
log_printf( &logger, " Read data: %s\r\n", data_buf );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
log_printf ( &logger, " ----------------------------\r\n" );
}
#define MRAM4_CMD_ERASE_4KB
Definition mram4.h:129
void application_task(void)
Definition main.c:75
#define DEMO_TEXT_MESSAGE_2
Definition main.c:34
#define DEMO_TEXT_MESSAGE_1
Definition main.c:33
#define STARTING_ADDRESS
Definition main.c:32
@ MRAM4_OK
Definition mram4.h:275

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.MRAM4

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.