pressure14 2.0.0.0
Main Page

Pressure 14 click

Pressure 14 Click is a compact add-on board that contains a board-mount pressure sensor. This board features the ABP2LANT060PG2A3XX, a piezoresistive silicon pressure sensor offering a digital output for reading pressure over the specified full-scale pressure span and a temperature range from Honeywell Sensing and Productivity Solutions. This I2C configurable sensor is calibrated and temperature compensated for sensor offset, sensitivity, temperature effects, and accuracy errors, including non-linearity, repeatability, and hysteresis, using an on-board ASIC. This Click boardâ„¢ is suitable for pressure measurements in automotive applications, industrial and consumer applications.

click Product page


Click library

  • Author : Jelena Milosavljevic
  • Date : Jul 2021.
  • Type : I2C type

Software Support

We provide a library for the Pressure14 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

‍This library contains API for Pressure14 Click driver.

Standard key functions :

Example key functions :

  • pressure14_measure_cmd This function sends output measurement command that causes the ABP2 series pressure sensor to exit standby mode and enter operating mode.
    void pressure14_measure_cmd(pressure14_t *ctx)
    Pressure 14 output Measurement Command function.
  • pressure14_check_busy_flag_int This function returns the INT pin state which indicates the End-of-conversion for ABP2 series pressure sensor on Pressure 14 click board.
    uint8_t pressure14_check_busy_flag_int(pressure14_t *ctx)
    Pressure 14 checks INT pin state function.
  • pressure14_read_press_and_temp This function reads 24-bit pressure, 24-bit temperature data and 8-bit status register from the ABP2 series pressure sensor on Pressure 14 click board.
    void pressure14_read_press_and_temp ( pressure14_t *ctx, uint8_t *status_byte, uint32_t *pressure_data, uint32_t *temp_data );
    void pressure14_read_press_and_temp(pressure14_t *ctx, uint8_t *status_byte, uint32_t *pressure_data, uint32_t *temp_data)
    Pressure 14 read pressure and temperature function.

Example Description

‍This examples used ABP2 Series are piezoresistive silicon pressure sensors offering a digital output for reading pressure over the specified full scale pressure span and temperature range.

They are calibrated and temperature compensated for sensor offset, sensitivity, temperature effects and accuracy errors (which include non-linearity, repeatability and hysteresis) using an on-board Application Specific IntegratedCircuit (ASIC).

The demo application is composed of two sections :

Application Init

‍Initialization driver enables I2C.

void application_init ( void ) {
log_cfg_t log_cfg;
pressure14_cfg_t pressure14_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
pressure14_cfg_setup( &pressure14_cfg );
PRESSURE14_MAP_MIKROBUS( pressure14_cfg, MIKROBUS_1 );
err_t init_flag = pressure14_init( &pressure14, &pressure14_cfg );
if ( I2C_MASTER_ERROR == init_flag ) {
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
#define PRESSURE14_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition pressure14.h:211
void application_init(void)
Definition main.c:39

Application Task

‍The output measurement command is sent first forcing the ABP2 pressure sensor to exit standby mode and enter operating mode. The device busy state is evaluated via the

end-of-conversion pin ( INT ) following the pressure and temperature data acquisition and calculation. The results are being sent to the Usart Terminaland repeats every 5 seconds.

void application_task ( void ) {
pressure14_measure_cmd( &pressure14 );
Delay_ms ( 10 );
if ( pressure14_check_busy_flag_int( &pressure14 ) == 1 ) {
pressure14_read_press_and_temp ( &pressure14, &status, &pressure_tmp, &temperature_tmp );
temperature = pressure14_get_temperature( temperature_tmp, PRESSURE14_CONV_UNIT_CELSIUS );
log_printf( &logger, " Pressure : %.2f mbar \r\n", pressure );
log_printf( &logger, " Temperature : %.2f C \r\n", temperature );
log_printf( &logger, "-------------------------\r\n" );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
#define PRESSURE14_CONV_UNIT_MILIBAR
Definition pressure14.h:95
#define PRESSURE14_CONV_UNIT_CELSIUS
Pressure 14 description temperature conversion units.
Definition pressure14.h:108
float pressure14_get_temperature(uint32_t temperature_raw, uint8_t conv_unit)
Pressure 14 calculate temperature function.
float pressure14_get_pressure(uint32_t pressure_raw, uint8_t conv_unit)
Pressure 14 calculate pressure function.
void application_task(void)
Definition main.c:69

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Pressure14

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.