rfid 2.0.0.0
Main Page

RFID click

RFid click features CR95HF 13.56 MHz contactless transceiver as well as trace antenna.

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Apr 2021.
  • Type : SPI type

Software Support

We provide a library for the RFID Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

‍This library contains API for RFID Click driver.

Standard key functions :

  • rfid_cfg_setup Config Object Initialization function.
    void rfid_cfg_setup ( rfid_cfg_t *cfg );
    void rfid_cfg_setup(rfid_cfg_t *cfg)
    RFID configuration object setup function.
    RFID Click configuration object.
    Definition rfid.h:211
  • rfid_init Initialization function.
    RFID_RETVAL rfid_init ( rfid_t *ctx, rfid_cfg_t *cfg );
    err_t rfid_init(rfid_t *ctx, rfid_cfg_t *cfg)
    RFID initialization function.
    RFID Click context object.
    Definition rfid.h:177
  • rfid_default_cfg Click Default Configuration function.
    void rfid_default_cfg ( rfid_t *ctx );
    err_t rfid_default_cfg(rfid_t *ctx)
    RFID default configuration function.

Example key functions :

Example Description

‍This example demonstrates the use of RFID Click board by reading MIFARE ISO/IEC 14443 type A tag UID.

The demo application is composed of two sections :

Application Init

‍Initializes the driver, selects the communication interface and performs the click default configuration.

void application_init ( void )
{
log_cfg_t log_cfg;
rfid_cfg_t rfid_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
Delay_ms ( 100 );
// Click initialization.
rfid_cfg_setup( &rfid_cfg );
RFID_MAP_MIKROBUS( rfid_cfg, MIKROBUS_1 );
err_t error_flag = rfid_init( &rfid, &rfid_cfg );
if ( error_flag != RFID_OK )
{
log_error( &logger, " Please, run program again... " );
for ( ; ; );
}
log_printf( &logger, " Selecting communication interface... \r\n" );
if ( error_flag != RFID_OK )
{
log_error( &logger, " Please, run program again... " );
for ( ; ; );
}
log_printf( &logger, " Configuring the device... \r\n" );
error_flag = rfid_default_cfg ( &rfid );
if ( error_flag != RFID_OK )
{
log_error( &logger, " Please, run program again... " );
for ( ; ; );
}
log_printf( &logger, " The device has been configured! \r\n" );
}
#define RFID_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition rfid.h:150
#define RFID_SPI
Definition rfid.h:119
void application_init(void)
Definition main.c:39
@ RFID_OK
Definition rfid.h:248

Application Task

‍If there's a tag detected, it reads its UID and displays it on USB UART.

void application_task ( void )
{
uint8_t tag_uid[ 20 ] = { 0 };
uint8_t tag_len = rfid_get_tag_uid( &rfid, RFID_ISO_14443A, tag_uid );
if ( tag_len > 0 )
{
log_printf( &logger, " TAG UID: " );
for ( uint8_t cnt = 0; cnt < tag_len; cnt++ )
{
log_printf( &logger, "0x%.2X ", ( uint16_t ) tag_uid[ cnt ] );
}
log_printf( &logger, "\r\n----------------------------------\r\n" );
Delay_ms ( 1000 );
}
}
#define RFID_ISO_14443A
Definition rfid.h:110
void application_task(void)
Definition main.c:88

Note

‍It is recommended to tie SSI_0, SSI_1 to VCC/GND at power-up, depending on the communication interface selection by A and B on-board jumpers. SSI_0 - UART: 0 SPI: 1 SSI_1 - UART: 0 SPI: 0

Only tags with 4-byte or 7-byte UIDs are compatible with this example. We recommend MIKROE-1475 - an RFiD tag 13.56MHz compliant with ISO14443-A standard.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.RFID

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.