Stepper 15 click
Stepper 15 Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the DRV8889A, an automotive stepper driver with integrated current sense and stall detection from Texas Instruments.
click Product page
Click library
- Author : Nenad Filipovic
- Date : Mar 2021.
- Type : I2C/SPI type
Software Support
We provide a library for the Stepper15 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.
Library Description
This library contains API for Stepper15 Click driver.
Standard key functions :
stepper15_cfg_setup
Config Object Initialization function.
void stepper15_cfg_setup(stepper15_cfg_t *cfg)
Stepper 15 configuration object setup function.
Stepper 15 Click configuration object.
Definition stepper15.h:404
stepper15_init
Initialization function.
err_t stepper15_init(stepper15_t *ctx, stepper15_cfg_t *cfg)
Stepper 15 initialization function.
Stepper 15 Click context object.
Definition stepper15.h:385
stepper15_default_cfg
Click Default Configuration function.
err_t stepper15_default_cfg(stepper15_t *ctx)
Stepper 15 default configuration function.
Example key functions :
stepper15_make_one_step
Stepper 15 make one step function.
err_t stepper15_make_one_step(stepper15_t *ctx, uint8_t step_speed)
Stepper 15 make one step function.
stepper15_set_direction
Stepper 15 set direction function.
err_t stepper15_set_direction(stepper15_t *ctx, uint8_t direction)
Stepper 15 set direction function.
stepper15_step_by_angle
Stepper 15 step by angle function.
err_t stepper15_step_by_angle(stepper15_t *ctx, uint8_t step_speed, float angle, uint16_t step_360)
Stepper 15 step by angle function.
Example Description
This library contains API for the Stepper 15 Click driver. The library contains drivers for work control of the Stepper Motor.
The demo application is composed of two sections :
Application Init
Initializes I2C and SPI driver and set default configuration, enable the device and enable outputs mode.
log_cfg_t log_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
if ( ( init_flag == I2C_MASTER_ERROR ) || ( init_flag == SPI_MASTER_ERROR ) ) {
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
log_info( &logger, " Application Task " );
log_printf( &logger, "---------------------------------\r\n" );
Delay_ms ( 100 );
Delay_ms ( 100 );
log_printf( &logger, " Fault condition \r\n" );
} else {
log_printf( &logger, " Correct condition \r\n" );
}
log_printf( &logger, "---------------------------------\r\n" );
log_printf( &logger, " Stop the stepper motor \r\n" );
Delay_ms ( 1000 );
}
#define STEPPER15_FAULT_CONDITION
Stepper 15 fault condition state description setting.
Definition stepper15.h:347
#define STEPPER15_OUTPUT_MODE_OUTPUTS_ENABLE
Definition stepper15.h:334
#define STEPPER15_MAP_MIKROBUS(cfg, mikrobus)
MikroBUS pin mapping.
Definition stepper15.h:366
void stepper15_motor_stop(stepper15_t *ctx)
Stepper 15 motor stop function.
err_t stepper15_set_output_mode(stepper15_t *ctx, uint8_t output_mode)
Stepper 15 set output mode function.
err_t stepper15_set_work_mode(stepper15_t *ctx, uint8_t work_mode)
Stepper 15 set work mode function.
uint8_t stepper15_get_fault_condition(stepper15_t *ctx)
Stepper 15 get fault condition function.
#define STEPPER15_WORK_MODE_ENABLE_DEVICE
Definition stepper15.h:320
void application_init(void)
Definition main.c:38
Application Task
The application task represents an example that demonstrates the use of the Stepper 15 Click boardâ„¢ with which the user can sequentially move the motor. The first part of the sequence executes the clockwise/counterclockwise motor movement for an angle of 90-degrees with a step speed of 85/100%, all the way to the last sequence of the same movement routine of 360-degree angle with a step speed of 85/100%. Results are sent to the USART Terminal, where you can track their changes.
log_printf( &logger, "---------------------------------\r\n" );
log_printf( &logger, " Clockwise motion \r\n" );
log_printf( &logger, " Angle of rotation : 90 degrees \r\n" );
log_printf( &logger, " Step speed : 85 %% \r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "---------------------------------\r\n" );
log_printf( &logger, " Counterclockwise motion \r\n" );
log_printf( &logger, " Angle of rotation : 180 degrees \r\n" );
log_printf( &logger, " Step speed : 85 %% \r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "---------------------------------\r\n" );
log_printf( &logger, " Clockwise motion \r\n" );
log_printf( &logger, " Angle of rotation : 270 degrees \r\n" );
log_printf( &logger, " Step speed : 90 %% \r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "---------------------------------\r\n" );
log_printf( &logger, " Counterclockwise motion \r\n" );
log_printf( &logger, " Angle of rotation : 360 degrees \r\n" );
log_printf( &logger, " Step speed : 100 %% \r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "---------------------------------\r\n" );
log_printf( &logger, " Clockwise motion \r\n" );
log_printf( &logger, " Angle of rotation : 360 degrees \r\n" );
log_printf( &logger, " Step speed : 100 %% \r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
#define STEPPER15_DIRECTION_COUNTERCLOCKWISE
Stepper 15 direction description setting.
Definition stepper15.h:305
#define STEPPER15_DIRECTION_CLOCKWISE
Definition stepper15.h:306
void application_task(void)
Definition main.c:88
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.
Other mikroE Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.Stepper15
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all Mikroelektronika compilers.