c6dofimu5 2.0.0.0
Main Page

6DOF IMU 5 click

6DOF IMU 5 Click features 7-Axis ICM-20789 chip from TDK, an integrated 6-axis inertial device that combines a 3-axis gyroscope, 3-axis accelerometer, and an ultra-low noise MEMS capacitive pressure sensor.

click Product page


Click library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : I2C/SPI type

Software Support

We provide a library for the C6DofImu5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

‍This library contains API for C6DofImu5 Click driver.

Standard key functions :

  • Config Object Initialization function.

    ‍void c6dofimu5_cfg_setup ( c6dofimu5_cfg_t *cfg );

    - Initialization function.

    ‍C6DOFIMU5_RETVAL c6dofimu5_init ( c6dofimu5_t *ctx, c6dofimu5_cfg_t *cfg );

  • Click Default Configuration function.

    ‍void c6dofimu5_default_cfg ( c6dofimu5_t *ctx );

Example key functions :

  • This function turns the device on or off.

    ‍void c6dofimu5_power ( c6dofimu5_t *ctx, uint8_t on_off );

    - This function is used to read gyroscope data.

    ‍void c6dofimu5_read_gyroscope ( c6dofimu5_t *ctx, int16_t *gyro_x, int16_t *gyro_y, int16_t *gyro_z );

  • This function is used to read accelerometer data.

    ‍void c6dofimu5_read_accelerometer ( c6dofimu5_t *ctx, int16_t *accel_x, int16_t *accel_y, int16_t *accel_z );

    Examples Description

‍This example demonstrates the use of 6DOF IMU 5 click board.

The demo application is composed of two sections :

Application Init

‍Initializes the driver, checks the communication and sets the device default configuration.

void application_init ( void )
{
log_cfg_t log_cfg;
uint8_t id_val;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
C6DOFIMU5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
c6dofimu5_init( &c6dofimu5, &cfg );
c6dofimu5_read_bytes ( &c6dofimu5, C6DOFIMU5_WHO_AM_I, &id_val, 1 );
if ( id_val == C6DOFIMU5_WHO_AM_I_VAL )
{
log_printf( &logger, "-------------------------\r\n " );
log_printf( &logger, " 6DOF IMU 5 click \r\n " );
log_printf( &logger, "-------------------------\r\n " );
}
else
{
log_printf( &logger, "-------------------------\r\n " );
log_printf( &logger, " FATAL ERROR!!! \r\n " );
log_printf( &logger, "-------------------------\r\n " );
for ( ; ; );
}
c6dofimu5_default_cfg( &c6dofimu5 );
c6dofimu5_baro_settings( &c6dofimu5 );
log_printf( &logger, " ---Initialised--- \r\n " );
log_printf( &logger, "-------------------------\r\n " );
Delay_ms ( 100 );
}
#define C6DOFIMU5_MAP_MIKROBUS(cfg, mikrobus)
Definition c6dofimu5.h:68
#define C6DOFIMU5_POWER_ON
Definition c6dofimu5.h:380
void c6dofimu5_default_cfg(c6dofimu5_t *ctx)
Click Default Configuration function.
void c6dofimu5_power(c6dofimu5_t *ctx, uint8_t on_off)
Power up function.
void c6dofimu5_baro_settings(c6dofimu5_t *ctx)
I2C Barometer Settings function.
void c6dofimu5_read_bytes(c6dofimu5_t *ctx, uint8_t reg, uint8_t *rd_data, uint16_t n_bytes)
Generic read function.
void c6dofimu5_cfg_setup(c6dofimu5_cfg_t *cfg)
Config Object Initialization function.
C6DOFIMU5_RETVAL c6dofimu5_init(c6dofimu5_t *ctx, c6dofimu5_cfg_t *cfg)
Initialization function.
#define C6DOFIMU5_WHO_AM_I
Definition c6dofimu5.h:155
#define C6DOFIMU5_WHO_AM_I_VAL
Definition c6dofimu5.h:355
void application_init(void)
Definition main.c:34
Click configuration structure definition.
Definition c6dofimu5.h:457

Application Task

‍Measures acceleration, gyroscope, temperature and pressure data and displays the results on USB UART each second.

void application_task ( void )
{
float x_gyro;
float y_gyro;
float z_gyro;
float x_accel;
float y_accel;
float z_accel;
uint32_t raw_pres;
uint16_t raw_temp;
c6dofimu5_acceleration_rate( &c6dofimu5, &x_accel, &y_accel, &z_accel );
c6dofimu5_angular_rate( &c6dofimu5, &x_gyro, &y_gyro, &z_gyro );
log_printf( &logger, " Accel X: %.2f \t Gyro X: %.2f\r\n", x_accel, x_gyro );
log_printf( &logger, " Accel Y: %.2f \t Gyro Y: %.2f\r\n", y_accel, y_gyro );
log_printf( &logger, " Accel Z: %.2f \t Gyro Z: %.2f\r\n", z_accel, z_gyro );
log_printf( &logger, "-------------------------\r\n " );
c6dofimu5_read_raw_data( &c6dofimu5, &raw_pres, &raw_temp );
process_data.p_raw = raw_pres;
process_data.t_raw = raw_temp;
c6dofimu5_process_data( &c6dofimu5, &process_data );
log_printf( &logger, "Pressure: %.2f mBar\r\n " , process_data.pressure * 0.01 );
log_printf( &logger, "Temperature: %.2f Celsius\r\n " , process_data.temperature );
log_printf( &logger, "-------------------------\r\n" );
Delay_ms ( 1000 );
}
void c6dofimu5_angular_rate(c6dofimu5_t *ctx, float *x_ang_rte, float *y_ang_rte, float *z_ang_rte)
Read Angular Rate function.
void c6dofimu5_read_raw_data(c6dofimu5_t *ctx, uint32_t *pres, uint16_t *temp)
Read raw data function.
void c6dofimu5_acceleration_rate(c6dofimu5_t *ctx, float *x_accel_rte, float *y_accel_rte, float *z_accel_rte)
Read acceleration Rate function.
void c6dofimu5_process_data(c6dofimu5_t *ctx, c6dofimu5_process_data_t *process_d)
Process data function.
void application_task(void)
Definition main.c:84
Definition c6dofimu5.h:419
uint16_t t_raw
Definition c6dofimu5.h:421
uint32_t p_raw
Definition c6dofimu5.h:420
float pressure
Definition c6dofimu5.h:422
float temperature
Definition c6dofimu5.h:423

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.6DofImu5

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.