c6dofimu12 2.0.0.0
Main Page

6DOF IMU 12 click

6DOF IMU 12 Click carries the ultra-low-power BMI270 from Bosch Sensortec, inertial measurement unit optimized for wearables providing precise acceleration, angular rate measurement and intelligent on-chip motion-triggered interrupt features.

click Product page


Click library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : I2C/SPI type

Software Support

We provide a library for the C6DofImu12 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

‍This library contains API for C6DofImu12 Click driver.

Standard key functions :

  • Config Object Initialization function.

    ‍void c6dofimu12_cfg_setup ( c6dofimu12_cfg_t *cfg );

    - Initialization function.

    ‍C6DOFIMU12_RETVAL c6dofimu12_init ( c6dofimu12_t *ctx, c6dofimu12_cfg_t *cfg );

  • Click Default Configuration function.

    ‍void c6dofimu12_default_cfg ( c6dofimu12_t *ctx );

Example key functions :

  • Function check status initialization of the device of BMI270 6-axis, smart, low-power Inertial Measurement on 6DOF IMU 12 Click board.

    ‍C6DOFIMU12_RETVAL c6dofimu12_check_id ( c6dofimu12_t *ctx );

    - Function check status initialization of the device of BMI270 6-axis, smart, low-power Inertial Measurement on 6DOF IMU 12 Click board.

    ‍C6DOFIMU12_RETVAL c6dofimu12_check_init_status ( c6dofimu12_t *ctx );

  • Function reads Accel and Gyro 16-bit ( signed ) X-axis, Y-axis data and Z-axis data from the 12 targeted starts from C6DOFIMU12_REG_ACC_X_LSB_ADDR register address of BMI270 6-axis, smart, low-power Inertial Measurement on 6DOF IMU 12 Click board.

    ‍void c6dofimu12_get_data ( c6dofimu12_t *ctx, c6dofimu12_accel_t *accel_data, c6dofimu12_gyro_t *gyro_data );

    Examples Description

‍This example demonstrates the use of 6DOF IMU 12 click board.

The demo application is composed of two sections :

Application Init

‍Initializes the driver and checks the communication then initializes the device and sets the device default configuration.

void application_init ( void )
{
uint8_t tx_buf;
log_cfg_t log_cfg;
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
C6DOFIMU12_MAP_MIKROBUS( cfg, MIKROBUS_1 );
c6dofimu12_init( &c6dofimu12, &cfg );
Delay_ms ( 100 );
log_printf( &logger, " Driver init done \r\n" );
log_printf( &logger, "----------------------------------\r\n");
if ( c6dofimu12_check_id( &c6dofimu12 ) == C6DOFIMU12_SUCCESS )
{
log_printf( &logger, " Communication OK\r\n" );
log_printf( &logger, "----------------------------------\r\n");
}
else
{
log_printf( &logger, " Communication ERROR\r\n" );
log_printf( &logger, " Reset the device\r\n" );
log_printf( &logger, "----------------------------------\r\n");
for ( ; ; );
}
Delay_ms ( 100 );
Delay_ms ( 100 );
Delay_ms ( 100 );
Delay_ms ( 100 );
{
log_printf( &logger, " Initialization completed\r\n" );
log_printf( &logger, "----------------------------------\r\n");
}
else
{
log_printf( &logger, " Initialization ERROR\r\n" );
log_printf( &logger, " Reset the device\r\n" );
log_printf( &logger, "----------------------------------\r\n");
for( ; ; );
}
c6dofimu12_default_cfg( &c6dofimu12 );
Delay_ms ( 100 );
}
uint8_t bmi270_config_file[8192]
Definition c6dofimu12_config.h:3
#define C6DOFIMU12_CMD_INITIALIZATION_STOP
Definition c6dofimu12.h:365
#define C6DOFIMU12_FAST_PWR_UP_DISABLED
Definition c6dofimu12.h:360
#define C6DOFIMU12_CMD_INITIALIZATION_START
Definition c6dofimu12.h:364
#define C6DOFIMU12_FIFO_READ_DISABLED
Definition c6dofimu12.h:358
#define C6DOFIMU12_PWR_CONF_ADV_PWR_SAVE_DISABLED
Definition c6dofimu12.h:356
#define C6DOFIMU12_SUCCESS
Definition c6dofimu12.h:630
#define C6DOFIMU12_MAP_MIKROBUS(cfg, mikrobus)
Definition c6dofimu12.h:68
C6DOFIMU12_RETVAL c6dofimu12_check_init_status(c6dofimu12_t *ctx)
Check ID function.
void c6dofimu12_default_cfg(c6dofimu12_t *ctx)
Click Default Configuration function.
void c6dofimu12_generic_write(c6dofimu12_t *ctx, uint8_t reg, uint8_t *data_buf, uint16_t len)
Generic write function.
void c6dofimu12_cfg_setup(c6dofimu12_cfg_t *cfg)
Config Object Initialization function.
C6DOFIMU12_RETVAL c6dofimu12_check_id(c6dofimu12_t *ctx)
Check ID function.
C6DOFIMU12_RETVAL c6dofimu12_init(c6dofimu12_t *ctx, c6dofimu12_cfg_t *cfg)
Initialization function.
#define C6DOFIMU12_REG_PWR_CONF_ADDR
Definition c6dofimu12.h:160
#define C6DOFIMU12_REG_INIT_DATA_ADDR
Definition c6dofimu12.h:148
#define C6DOFIMU12_REG_INIT_CTRL_ADDR
Definition c6dofimu12.h:145
void application_init(void)
Definition main.c:37
Click configuration structure definition.
Definition c6dofimu12.h:700

Application Task

‍Measures acceleration and gyroscope data and displays the results on USB UART each second.

void application_task ( void )
{
c6dofimu12_get_data( &c6dofimu12, &c6dofimu12_accel, &c6dofimu12_gyro );
log_printf( &logger, " Accel X: %d | Gyro X: %d\r\n", c6dofimu12_accel.x, c6dofimu12_gyro.x );
log_printf( &logger, " Accel Y: %d | Gyro Y: %d\r\n", c6dofimu12_accel.y, c6dofimu12_gyro.y );
log_printf( &logger, " Accel Z: %d | Gyro Z: %d\r\n", c6dofimu12_accel.z, c6dofimu12_gyro.z );
log_printf( &logger, "----------------------------------\r\n");
Delay_ms ( 1000 );
}
void c6dofimu12_get_data(c6dofimu12_t *ctx, c6dofimu12_accel_t *accel_data, c6dofimu12_gyro_t *gyro_data)
Read Accel and Gyro data function.
void application_task(void)
Definition main.c:112

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.6DofImu12

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.