mikroSDK Reference Manual
tusb_fifo.h
1/*
2 * The MIT License (MIT)
3 *
4 * Copyright (c) 2019 Ha Thach (tinyusb.org)
5 * Copyright (c) 2020 Reinhard Panhuber - rework to unmasked pointers
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 *
25 * This file is part of the TinyUSB stack.
26 */
27
28#ifndef _TUSB_FIFO_H_
29#define _TUSB_FIFO_H_
30
31#ifdef __cplusplus
32extern "C" {
33#endif
34
35// Due to the use of unmasked pointers, this FIFO does not suffer from losing
36// one item slice. Furthermore, write and read operations are completely
37// decoupled as write and read functions do not modify a common state. Henceforth,
38// writing or reading from the FIFO within an ISR is safe as long as no other
39// process (thread or ISR) interferes.
40// Also, this FIFO is ready to be used in combination with a DMA as the write and
41// read pointers can be updated from within a DMA ISR. Overflows are detectable
42// within a certain number (see tu_fifo_overflow()).
43
44#include "common/tusb_common.h"
45#include "osal/osal.h"
46
47// mutex is only needed for RTOS
48// for OS None, we don't get preempted
49#define CFG_FIFO_MUTEX OSAL_MUTEX_REQUIRED
50
51/* Write/Read index is always in the range of:
52 * 0 .. 2*depth-1
53 * The extra window allow us to determine the fifo state of empty or full with only 2 indices
54 * Following are examples with depth = 3
55 *
56 * - empty: W = R
57 * |
58 * -------------------------
59 * | 0 | RW| 2 | 3 | 4 | 5 |
60 *
61 * - full 1: W > R
62 * |
63 * -------------------------
64 * | 0 | R | 2 | 3 | W | 5 |
65 *
66 * - full 2: W < R
67 * |
68 * -------------------------
69 * | 0 | 1 | W | 3 | 4 | R |
70 *
71 * - Number of items in the fifo can be determined in either cases:
72 * - case W >= R: Count = W - R
73 * - case W < R: Count = 2*depth - (R - W)
74 *
75 * In non-overwritable mode, computed Count (in above 2 cases) is at most equal to depth.
76 * However, in over-writable mode, write index can be repeatedly increased and count can be
77 * temporarily larger than depth (overflowed condition) e.g
78 *
79 * - Overflowed 1: write(3), write(1)
80 * In this case we will adjust Read index when read()/peek() is called so that count = depth.
81 * |
82 * -------------------------
83 * | R | 1 | 2 | 3 | W | 5 |
84 *
85 * - Double Overflowed i.e index is out of allowed range [0,2*depth)
86 * This occurs when we continue to write after 1st overflowed to 2nd overflowed. e.g:
87 * write(3), write(1), write(2)
88 * This must be prevented since it will cause unrecoverable state, in above example
89 * if not handled the fifo will be empty instead of continue-to-be full. Since we must not modify
90 * read index in write() function, which cause race condition. We will re-position write index so that
91 * after data is written it is a full fifo i.e W = depth - R
92 *
93 * re-position W = 1 before write(2)
94 * Note: we should also move data from mem[3] to read index as well, but deliberately skipped here
95 * since it is an expensive operation !!!
96 * |
97 * -------------------------
98 * | R | W | 2 | 3 | 4 | 5 |
99 *
100 * perform write(2), result is still a full fifo.
101 *
102 * |
103 * -------------------------
104 * | R | 1 | 2 | W | 4 | 5 |
105
106 */
107typedef struct
108{
109 uint8_t* buffer ; // buffer pointer
110 uint16_t depth ; // max items
111
113 uint16_t item_size : 15; // size of each item
114 bool overwritable : 1 ; // ovwerwritable when full
115 };
116
117 volatile uint16_t wr_idx ; // write index
118 volatile uint16_t rd_idx ; // read index
119
120#if OSAL_MUTEX_REQUIRED
121 osal_mutex_t mutex_wr;
122 osal_mutex_t mutex_rd;
123#endif
124
125} tu_fifo_t;
126
127typedef struct
128{
129 uint16_t len_lin ;
130 uint16_t len_wrap ;
131 void * ptr_lin ;
132 void * ptr_wrap ;
134
135#define TU_FIFO_INIT(_buffer, _depth, _type, _overwritable) \
136{ \
137 .buffer = _buffer, \
138 .depth = _depth, \
139 .item_size = sizeof(_type), \
140 .overwritable = _overwritable, \
141}
142
143#define TU_FIFO_DEF(_name, _depth, _type, _overwritable) \
144 uint8_t _name##_buf[_depth*sizeof(_type)]; \
145 tu_fifo_t _name = TU_FIFO_INIT(_name##_buf, _depth, _type, _overwritable)
146
147
148bool tu_fifo_set_overwritable(tu_fifo_t *f, bool overwritable);
149bool tu_fifo_clear(tu_fifo_t *f);
150bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_size, bool overwritable);
151
152#if OSAL_MUTEX_REQUIRED
153TU_ATTR_ALWAYS_INLINE static inline
154void tu_fifo_config_mutex(tu_fifo_t *f, osal_mutex_t wr_mutex, osal_mutex_t rd_mutex)
155{
156 f->mutex_wr = wr_mutex;
157 f->mutex_rd = rd_mutex;
158}
159
160#else
161
162#define tu_fifo_config_mutex(_f, _wr_mutex, _rd_mutex)
163
164#endif
165
166bool tu_fifo_write (tu_fifo_t* f, void const * p_data);
167uint16_t tu_fifo_write_n (tu_fifo_t* f, void const * p_data, uint16_t n);
168uint16_t tu_fifo_write_n_const_addr_full_words (tu_fifo_t* f, const void * data, uint16_t n);
169
170bool tu_fifo_read (tu_fifo_t* f, void * p_buffer);
171uint16_t tu_fifo_read_n (tu_fifo_t* f, void * p_buffer, uint16_t n);
172uint16_t tu_fifo_read_n_const_addr_full_words (tu_fifo_t* f, void * buffer, uint16_t n);
173
174bool tu_fifo_peek (tu_fifo_t* f, void * p_buffer);
175uint16_t tu_fifo_peek_n (tu_fifo_t* f, void * p_buffer, uint16_t n);
176
177uint16_t tu_fifo_count (tu_fifo_t* f);
178uint16_t tu_fifo_remaining (tu_fifo_t* f);
179bool tu_fifo_empty (tu_fifo_t* f);
180bool tu_fifo_full (tu_fifo_t* f);
181bool tu_fifo_overflowed (tu_fifo_t* f);
182void tu_fifo_correct_read_pointer (tu_fifo_t* f);
183
184TU_ATTR_ALWAYS_INLINE static inline
185uint16_t tu_fifo_depth(tu_fifo_t* f)
186{
187 return f->depth;
188}
189
190// Pointer modifications intended to be used in combinations with DMAs.
191// USE WITH CARE - NO SAFETY CHECKS CONDUCTED HERE! NOT MUTEX PROTECTED!
192void tu_fifo_advance_write_pointer(tu_fifo_t *f, uint16_t n);
193void tu_fifo_advance_read_pointer (tu_fifo_t *f, uint16_t n);
194
195// If you want to read/write from/to the FIFO by use of a DMA, you may need to conduct two copies
196// to handle a possible wrapping part. These functions deliver a pointer to start
197// reading/writing from/to and a valid linear length along which no wrap occurs.
198void tu_fifo_get_read_info (tu_fifo_t *f, tu_fifo_buffer_info_t *info);
199void tu_fifo_get_write_info(tu_fifo_t *f, tu_fifo_buffer_info_t *info);
200
201
202#ifdef __cplusplus
203}
204#endif
205
206#endif /* _TUSB_FIFO_H_ */
Definition tusb_fifo.h:128
void * ptr_lin
linear part start pointer
Definition tusb_fifo.h:131
uint16_t len_lin
linear length in item size
Definition tusb_fifo.h:129
void * ptr_wrap
wrapped part start pointer
Definition tusb_fifo.h:132
uint16_t len_wrap
wrapped length in item size
Definition tusb_fifo.h:130
Definition tusb_fifo.h:112
Definition tusb_fifo.h:108